Download Free Asymptotic Analysis And Singularities Hyperbolic And Dispersive Pdes And Fluid Mechanics Book in PDF and EPUB Free Download. You can read online Asymptotic Analysis And Singularities Hyperbolic And Dispersive Pdes And Fluid Mechanics and write the review.

This volume is the proceedings of the 14th MSJ International Research Institute "Asymptotic Analysis and Singularity", which was held at Sendai, Japan in July 2005. The proceedings contain survey papers and original research papers on nonlinear partial differential equations, dynamical systems, calculus of variations and mathematical physics.Published by Mathematical Society of Japan and distributed by World Scientific Publishing Co. for all markets except North America
This volume is the proceedings of the 14th MSJ International Research Institute "Asymptotic Analysis and Singularity", which was held at Sendai, Japan in July 2005. The proceedings contain survey papers and original research papers on nonlinear partial differential equations, dynamical systems, calculus of variations and mathematical physics.Published by Mathematical Society of Japan and distributed by World Scientific Publishing Co. for all markets except North America
This volume explores the random perturbation of PDEs and fluid dynamic models. The text describes the role of additive and bilinear multiplicative noise, and includes examples of abstract parabolic evolution equations.
The aim of this proceeding is addressed to present recent developments of the mathematical research on the Navier-Stokes equations, the Euler equations and other related equations. In particular, we are interested in such problems as: 1) existence, uniqueness and regularity of weak solutions2) stability and its asymptotic behavior of the rest motion and the steady state3) singularity and blow-up of weak and strong solutions4) vorticity and energy conservation5) fluid motions around the rotating axis or outside of the rotating body6) free boundary problems7) maximal regularity theorem and other abstract theorems for mathematical fluid mechanics.
This volume is the Proceedings of the international conference on Probability and Number Theory held at Kanazawa, Japan, in June 2005, and includes several survey articles on probabilistic number theory, and research papers on various recent topics around the border area between probability theory and number theory. This volume is useful for all researchers and graduate students who are interested in probability theory and number theory.Published by Mathematical Society of Japan and distributed by World Scientific Publishing Co. for all markets except North America
This volume contains the proceedings of talks presented at the 11th International Conference on Difference Equations and Applications (ICDEA 2006). ICDEA 2006 was held on July 2006 in Kyoto at the 15th MSJ International Research Institute. These proceedings comprise new results at the leading edge of many areas in difference equations and discrete dynamical systems and their various applications to the sciences, engineering, physics, and economics.
This volume contains the proceedings of the conference ``Primitive Forms and Related Subjects'', held at the Kavli Institute for the Physics and Mathematics of the Universe (IPMU), University of Tokyo, February 10-14, 2014. The principal aim of the conference was to discuss the current status of rapidly developing subjects related to primitive forms. In particular, Fukaya category, Gromov-Witten and FJRW invariants, mathematical formulation of Landau-Ginzburg models, and mirror symmetry were discussed. The conference had three introductory courses by.experts and 12 lectures on more advanced topics. This volume volume contains two survey articles and 11 research articles based on the conference presentations.
This volume contains two survey articles and eight research articles contributed by the invited lecturers at the conference Algebraic Geometry in East Asia. II, which was held at the Conference Hall (Hanoi, Vietnam) from October 10-14, 2005. Topics touched upon in this volume include Zariski pairs, rational homogeneous manifolds, Kummer surfaces, singularity theory, Cremona groups, algebraic curves, dual varieties, Castelnuovo-Weil lattices, etc. The reader can not only find the current status of a variety of research topics but also enjoy the art of the subjects presented by leading algebraic geometers.
This monograph provides a comprehensive and self-contained study on the theory of water waves equations, a research area that has been very active in recent years. The vast literature devoted to the study of water waves offers numerous asymptotic models.