Download Free Astrophysics Of Black Holes Book in PDF and EPUB Free Download. You can read online Astrophysics Of Black Holes and write the review.

This book discusses the state of the art of the basic theoretical and observational topics related to black hole astrophysics. It covers all the main topics in this wide field, from the theory of accretion disks and formation mechanisms of jet and outflows, to their observed electromagnetic spectrum, and attempts to measure the spin of these objects. Black holes are one of the most fascinating predictions of general relativity and are currently a very hot topic in both physics and astrophysics. In the last five years there have been significant advances in our understanding of these systems, and in the next five years it should become possible to use them to test fundamental physics, in particular to predict the general relativity in the strong field regime. The book is both a reference work for researchers and a textbook for graduate students.
As a result of significant research over the past 20 years, black holes are now linked to some of the most spectacular and exciting phenomena in the Universe, ranging in size from those that have the same mass as stars to the super-massive objects that lie at the heart of most galaxies, including our own Milky Way. This book first introduces the properties of simple isolated holes, then adds in complications like rotation, accretion, radiation, and magnetic fields, finally arriving at a basic understanding of how these immense engines work. Black Hole Astrophysics • reviews our current knowledge of cosmic black holes and how they generate the most powerful observed pheonomena in the Universe; • highlights the latest, most up-to-date theories and discoveries in this very active area of astrophysical research; • demonstrates why we believe that black holes are responsible for important phenomena such as quasars, microquasars and gammaray bursts; • explains to the reader the nature of the violent and spectacular outfl ows (winds and jets) generated by black hole accretion.
Based on graduate school lectures in contemporary relativity and gravitational physics, this book gives a complete and unified picture of the present status of theoretical and observational properties of astrophysical black holes. The chapters are written by internationally recognized specialists. They cover general theoretical aspects of black hole astrophysics, the theory of accretion and ejection of gas and jets, stellar-sized black holes observed in the Milky Way, the formation and evolution of supermassive black holes in galactic centers and quasars as well as their influence on the dynamics in galactic nuclei. The final chapter addresses analytical relativity of black holes supporting theoretical understanding of the coalescence of black holes as well as being of great relevance in identifying gravitational wave signals. With its introductory chapters the book is aimed at advanced graduate and post-graduate students, but it will also be useful for specialists.
This book is based on the lecture notes of a one-semester course on black hole astrophysics given by the author and is aimed at advanced undergraduate and graduate students with an interest in astrophysics. The material included goes beyond that found in classic textbooks and presents details on astrophysical manifestations of black holes. In particular, jet physics and detailed accounts of objects like microquasars, active galactic nuclei, gamma-ray bursts, and ultra-luminous X-ray sources are covered, as well as advanced topics like black holes in alternative theories of gravity. The author avoids unnecessary technicalities and to some degree the book is self-contained. The reader will find some basic general relativity tools in Chapter 1. The appendices provide some additional mathematical details that will be useful for further study, and a guide to the bibliography on the subject.
What happens when something is sucked into a black hole? Does it disappear? Three decades ago, a young physicist named Stephen Hawking claimed it did, and in doing so put at risk everything we know about physics and the fundamental laws of the universe. Most scientists didn't recognize the import of Hawking's claims, but Leonard Susskind and Gerard t'Hooft realized the threat, and responded with a counterattack that changed the course of physics. The Black Hole War is the thrilling story of their united effort to reconcile Hawking's revolutionary theories of black holes with their own sense of reality -- effort that would eventually result in Hawking admitting he was wrong, paying up, and Susskind and t'Hooft realizing that our world is a hologram projected from the outer boundaries of space. A brilliant book about modern physics, quantum mechanics, the fate of stars and the deep mysteries of black holes, Leonard Susskind's account of the Black Hole War is mind-bending and exhilarating reading.
It is not an exaggeration to say that one of the most exciting predictions of Einstein's theory of gravitation is that there may exist "black holes": putative objects whose gravitational fields are so strong that no physical bodies or signals can break free of their pull and escape. The proof that black holes do exist, and an analysis of their properties, would have a significance going far beyond astrophysics. Indeed, what is involved is not just the discovery of yet another even if extremely remarkable, astro physical object, but a test of the correctness of our understanding of the properties of space and time in extremely strong gravitational fields. Theoretical research into the properties of black holes, and into the possible corol laries of the hypothesis that they exist, has been carried out with special vigor since the beginning of the 1970's. In addition to those specific features of black holes that are important for the interpretation of their possible astrophysical manifestations, the theory has revealed a number of unexpected characteristics of physical interactions involving black holes. By the middle of the 1980's a fairly detailed understanding had been achieved of the properties of the black holes, their possible astrophysical manifestations, and the specifics of the various physical processes involved. Even though a completely reliable detection of a black hole had not yet been made at that time, several objects among those scrutinized by astrophysicists were considered as strong candidates to be confirmed as being black holes.
Black Holes are still considered to be among the most mysterious and fascinating objects in our universe. Awaiting the era of gravitational astronomy, much progress in theoretical modeling and understanding of classical and quantum black holes has already been achieved. The present volume serves as a tutorial, high-level guided tour through the black-hole landscape: information paradox and blackhole thermodynamics, numerical simulations of black-hole formation and collisions, braneworld scenarios and stability of black holes with respect to perturbations are treated in great detail, as is their possible occurrence at the LHC. An outgrowth of a topical and tutorial summer school, this extensive set of carefully edited notes has been set up with the aim of constituting an advanced-level, multi-authored textbook which meets the needs of both postgraduate students and young researchers in the fields of modern cosmology, astrophysics and (quantum) field theory.
What is a black hole? How many of them are in our Universe? Can black holes be created in a laboratory or in particle colliders? Can objects similar to black holes be used for space and time travel? This book discusses these and many other questions providing the reader with the tools required to explore the Black Hole Land independently.
This self-contained textbook brings together many different branches of physics--e.g. nuclear physics, solid state physics, particle physics, hydrodynamics, relativity--to analyze compact objects. The latest astronomical data is assessed. Over 250 exercises.
This book focuses on one mechanism in black hole physics which has proven to be universal, multifaceted and with a rich phenomenology: rotational superradiance. This is an energy extraction process, whereby black holes can deposit their rotational energy in their surroundings, leading to Penrose processes, black-hole bombs, and even Hawking radiation. Black holes are key players in star formation mechanisms and as engines to some of the most violent events in our universe. Their simplicity and compactness make them perfect laboratories, ideally suited to probe new fields or modifications to the theory of gravity. Thus, black holes can also be used to probe some of the most important open problems in physics, including the nature of dark matter or the strong CP problem in particle physics. This monograph is directed to researchers and graduate students and provides a unified view of the subject, covering the theoretical machinery, experimental efforts in the laboratory, and astrophysics searches. It is focused on recent developments and works out a number of novel examples and applications, ranging from fundamental physics to astrophysics. Non-specialists with a scientific background should also find this text a valuable resource for understanding the critical issues of contemporary research in black-hole physics. This second edition stresses the role of ergoregions in superradiance, and completes its catalogue of energy-extraction processes. It presents a unified description of instabilities of spinning black holes in the presence of massive fields. Finally, it covers the first experimental observation of superradiance, and reviews the state-of-the-art in the searches for new light fields in the universe using superradiance as a mechanism.