Download Free Associated Sequences Demimartingales And Nonparametric Inference Book in PDF and EPUB Free Download. You can read online Associated Sequences Demimartingales And Nonparametric Inference and write the review.

This book gives a comprehensive review of results for associated sequences and demimartingales developed so far, with special emphasis on demimartingales and related processes. Probabilistic properties of associated sequences, demimartingales and related processes are discussed in the first six chapters. Applications of some of these results to some problems in nonparametric statistical inference for such processes are investigated in the last three chapters.
The problem of forecasting future values of economic and physical processes, the problem of restoring lost information, cleaning signals or other data observations from noise, is magnified in an information-laden word. Methods of stochastic processes estimation depend on two main factors. The first factor is construction of a model of the process being investigated. The second factor is the available information about the structure of the process under consideration. In this book, we propose results of the investigation of the problem of mean square optimal estimation (extrapolation, interpolation, and filtering) of linear functionals depending on unobserved values of stochastic sequences and processes with periodically stationary and long memory multiplicative seasonal increments. Formulas for calculating the mean square errors and the spectral characteristics of the optimal estimates of the functionals are derived in the case of spectral certainty, where spectral structure of the considered sequences and processes are exactly known. In the case where spectral densities of the sequences and processes are not known exactly while some sets of admissible spectral densities are given, we apply the minimax-robust method of estimation.
Estimation of Stochastic Processes is intended for researchers in the field of econometrics, financial mathematics, statistics or signal processing. This book gives a deep understanding of spectral theory and estimation techniques for stochastic processes with stationary increments. It focuses on the estimation of functionals of unobserved values for stochastic processes with stationary increments, including ARIMA processes, seasonal time series and a class of cointegrated sequences. Furthermore, this book presents solutions to extrapolation (forecast), interpolation (missed values estimation) and filtering (smoothing) problems based on observations with and without noise, in discrete and continuous time domains. Extending the classical approach applied when the spectral densities of the processes are known, the minimax method of estimation is developed for a case where the spectral information is incomplete and the relations that determine the least favorable spectral densities for the optimal estimations are found.
In many statistical applications, scientists have to analyze the occurrence of observed clusters of events in time or space. Scientists are especially interested in determining whether an observed cluster of events has occurred by chance if it is assumed that the events are distributed independently and uniformly over time or space. Scan statistics have relevant applications in many areas of science and technology including geology, geography, medicine, minefield detection, molecular biology, photography, quality control and reliability theory and radio-optics.
Ces notes sont consacrées aux inégalités et aux théorèmes limites classiques pour les suites de variables aléatoires absolument régulières ou fortement mélangeantes au sens de Rosenblatt. Le but poursuivi est de donner des outils techniques pour l'étude des processus faiblement dépendants aux statisticiens ou aux probabilistes travaillant sur ces processus.
The book concerns the notion of association in probability and statistics. Association and some other positive dependence notions were introduced in 1966 and 1967 but received little attention from the probabilistic and statistics community. The interest in these dependence notions increased in the last 15 to 20 years, and many asymptotic results were proved and improved. Despite this increased interest, characterizations and results remained essentially scattered in the literature published in different journals. The goal of this book is to bring together the bulk of these results, presenting the theory in a unified way, explaining relations and implications of the results. It will present basic definitions and characterizations, followed by a collection of relevant inequalities. These are then applied to characterize almost sure and weak convergence of sequences of associated variables. It will also cover applications of positive dependence to the characterization of asymptotic results in nonparametric statistics. The book is directed towards researchers in probability and statistics, with particular emphasis on people interested in nonparametric methods. It will also be of interest to graduate students in those areas. The book could also be used as a reference on association in a course covering dependent variables and their asymptotics. As prerequisite, readers should have knowledge of basic probability on the reals and on metric spaces. Some acquaintance with the asymptotics of random functions, such us empirical processes and partial sums processes, is useful but not essential.
This volume is devoted to the study of asymptotic properties of wide classes of stochastic systems arising in mathematical statistics, percolation theory, statistical physics and reliability theory. Attention is paid not only to positive and negative associations introduced in the pioneering papers by Harris, Lehmann, Esary, Proschan, Walkup, Fortuin, Kasteleyn and Ginibre, but also to new and more general dependence conditions. Naturally, this scope comprises families of independent real-valued random variables. A variety of important results and examples of Markov processes, random measures, stable distributions, Ising ferromagnets, interacting particle systems, stochastic differential equations, random graphs and other models are provided. For such random systems, it is worthwhile to establish principal limit theorems of the modern probability theory (central limit theorem for random fields, weak and strong invariance principles, functional law of the iterated logarithm etc.) and discuss their applications. There are 434 items in the bibliography. The book is self-contained, provides detailed proofs, for reader's convenience some auxiliary results are included in the Appendix (e.g. the classical Hoeffding lemma, basic electric current theory etc.). Contents: Random Systems with Covariance Inequalities; Moment and Maximal Inequalities; Central Limit Theorem; Almost Sure Convergence; Invariance Principles; Law of the Iterated Logarithm; Statistical Applications; Integral Functionals. Readership: Researchers in modern probability and statistics, graduate students and academic staff of the universities.
Change-point problems arise in a variety of experimental and mathematical sciences, as well as in engineering and health sciences. This rigorously researched text provides a comprehensive review of recent probabilistic methods for detecting various types of possible changes in the distribution of chronologically ordered observations. Further developing the already well-established theory of weighted approximations and weak convergence, the authors provide a thorough survey of parametric and non-parametric methods, regression and time series models together with sequential methods. All but the most basic models are carefully developed with detailed proofs, and illustrated by using a number of data sets. Contains a thorough survey of: The Likelihood Approach Non-Parametric Methods Linear Models Dependent Observations This book is undoubtedly of interest to all probabilists and statisticians, experimental and health scientists, engineers, and essential for those working on quality control and surveillance problems. Foreword by David Kendall
This book develops Doukhan/Louhichi's 1999 idea to measure asymptotic independence of a random process. The authors, who helped develop this theory, propose examples of models fitting such conditions: stable Markov chains, dynamical systems or more complicated models, nonlinear, non-Markovian, and heteroskedastic models with infinite memory. Applications are still needed to develop a method of analysis for nonlinear times series, and this book provides a strong basis for additional studies.
Expert practical and theoretical coverage of runs and scans This volume presents both theoretical and applied aspects of runs and scans, and illustrates their important role in reliability analysis through various applications from science and engineering. Runs and Scans with Applications presents new and exciting content in a systematic and cohesive way in a single comprehensive volume, complete with relevant approximations and explanations of some limit theorems. The authors provide detailed discussions of both classical and current problems, such as: * Sooner and later waiting time * Consecutive systems * Start-up demonstration testing in life-testing experiments * Learning and memory models * "Match" in genetic codes Runs and Scans with Applications offers broad coverage of the subject in the context of reliability and life-testing settings and serves as an authoritative reference for students and professionals alike.