Download Free Assessment Of Opportunities For New United States Pumped Storage Hydroelectric Plants Using Existing Water Features As Auxiliary Reservoirs Book in PDF and EPUB Free Download. You can read online Assessment Of Opportunities For New United States Pumped Storage Hydroelectric Plants Using Existing Water Features As Auxiliary Reservoirs and write the review.

Fossil fuels comprise the accumulation of prehistoric biomass that was energised by sunlight, and formed by earth system dynamics. Fossil fuels can be conceptualized as stored energy stocks that can be readily converted to power flows, on demand. A transition from a reliance on stored energy stocks, to renewable energy flows, will require a replication of energy storage by technological devices and energy conversion methods. Most analyses of energy storage focus solely on the economic-technical properties of storage within incumbent energy systems. This book broadens the scope of the study of storage by placing it within a broader, historical, biophysical framework. The role and value of storage is examined from first principles, and framed within the contemporary context of electrical grids and markets. The energy-economic cost of electrical storage may be critical to the efficacy of high penetration renewable scenarios, and understanding the costs and benefits of storage is needed for a proper assessment of storage in energy transition studies. This book provides a starting point for engineers, scientists and energy analysts for exploring the role of storage in energy transition studies, and for gaining an appreciation of the biophysical constraints of storage.
The Richard B. Russell Dam and Lake Project is presently under construction and is being placed in tandem between Hartwell and Clark Hill, two existing multipurpose hydropower plants on the Savannah River. System operational simulations were performed in support of a feasibility study for the installation of pump turbines at Russell, using a version of the Corps of Engineers HEC-5C computer program modified for system power and pumped storage. Information developed from the simulations include system hydropower production, pumping energy requirements, daily reservoir pool fluctuations, and reservoir elevation statistics. This information was useful in judging the effects of the addition of pumped storage on system hydropower production and reservoir recreation useability, as well as in ascertaining efficient system operational methods. (Author).
Existing tools for long-term electric sector planning struggle to represent hydropower's nuanced site-specific technical and operating characteristics, which depend on technical specifications as well as water management practices and regulations. As a result, long-term planning models and tools insufficiently characterize hydropower value and incentives, and they cannot fully represent the role hydropower can play in a future electricity system that could include a high penetration of variable wind and solar generation, battery storage, and other low-carbon technologies. This presentation demonstrates the culmination of a multi-year effort to enhance hydropower representations in electricity planning models at the National Renewable Energy Laboratory (NREL), as part of the U.S. Department of Energy (USDOE) HydroWIRES Initiative. New modeling techniques are demonstrated using the NREL Regional Energy Deployment System (ReEDS), an open-access electric sector capacity expansion model used extensively in a wide range of technology deployment and integration analysis, including the 2016 USDOE Hydropower Vision. ReEDS uses a least-cost optimization approach to understand investment and operation of electricity generation, storage, and transmission technologies under future scenarios of electricity technology innovation, demand, policy, and other sectoral drivers. ReEDS was modified to better represent value and opportunities for both pumped storage hydropower (PSH) and hydropower systems without pumping. We incorporated a new national closed-loop PSH resource and cost assessment to explore new PSH deployment opportunities and added plant-level data to better represent the existing PSH fleet. New upgrade pathways enable opportunities for enhanced hydropower flexibility by adding pumps, upgrading dispatchability, increasing capacity, or increasing energy availability. The model was also modified to better represent the value of long-duration energy storage beyond diurnal time scales, allowing both hydropower and PSH to better balance energy supply and demand variations in high-renewable systems. These new features are demonstrated under reference and high-renewable futures and a range of sensitivity scenarios to understand which hydropower and PSH deployment and upgrade opportunities are the most attractive. These scenarios indicate potential for new closed-loop PSH deployment and for hydropower flexibility improvements to have important impacts on long-term electricity system emissions and economic outcomes. Increasing flexibility of the existing hydropower fleet can reduce the need to invest in new flexible grid technologies and help achieve decarbonization goals. Systems with sufficient energy storage could also be valuable for balancing seasonal differences in renewable energy availability, particularly from solar energy. The methods developed for ReEDS and subsequent scenario results reveal important considerations for future hydropower and grid system planning, and all data and code is freely available in a public code repository for use throughout the hydropower industry.
This paper describes the procedures and results of an investigation to evaluate potential increases in nationwide hydropower production that could be achieved by reallocation of flood control storage at existing hydropower reservoirs. One aspect of the investigation considered only the increase in energy that could be achieved by storage reallocation; a second aspect considered potential gains in both energy and capacity that could be achieved by adding to the existing installed capacity as well as storage reallocation. The investigation was performed by the Hydrologic Engineering Center of the U.S. Army Corps of Engineers, and is a component of a technical overview study which is part of the National Hydropower Study. (Author).