Download Free Asphalt Binder Testing Book in PDF and EPUB Free Download. You can read online Asphalt Binder Testing and write the review.

Now updated, this volume serves as a single resource to supplement Superpave PG asphalt binder system test methods. This new edition contains a chapter on the direct tension test (DTT), an introduction to the new multi-stress creep-recovery test (MSCR), a troubleshooting section and updated graphics.
A dozen papers from a December 1993 symposium in Dallas/Fort Worth, Texas. Among the topics are why the new proposed rheological properties of asphalt binders are required and how they compare to conventional properties, the development and use of the SHRP direct tension specification test, oxidatio
The Superpave specifications and equipment, introduced in 1993, represented a major advancement with respect to offering a better understanding of the behavior and characteristics of asphalt binders based on their rheological properties. However, the Superpave high-temperature test protocol has been shown to be inadequate for characterizing the high-temperature behavior (rutting resistance) of asphalt binders, particularly polymer modified ones. Recently, a specification based on the Multiple Stress Creep Recovery (MSCR) test has been proposed to address the shortcomings of the Superpave high-temperature binder specifications. This study aims to investigate the merits of implementing the MSCR test and specification as a replacement for the conventional high-temperature testing in the Performance Graded (PG) system. A statistical analysis was conducted on a dataset from Indiana Department of Transportation (INDOT) to see how MSCR and PG procedures differ in grading different binders used in the state. In addition, an experimental study was conducted using seventeen different modified and unmodified binders. In addition to binder tests, seven of the binders were selected to conduct asphalt mixture tests such as dynamic modulus and flow number. The results confirm that the MSCR test is a suitable replacement for the current PG high temperature test since it provides a better tool to rank modified asphalt binders as well as unmodified ones. That is, creep compliance from the MSCR test more fundamentally represents binder behavior at high temperatures compared to the PG rutting parameter. In addition, the very simplified approach, known as grade-bumping, used in the current PG system to account for high traffic levels and low speed limits can be eliminated when using the MSCR test. The MSCR test also provides a better coefficient of correlation (at both stress levels) with flow number test results than the PG rutting parameter, again indicating that it more accurately reflects binder performance at high temperatures.
This Innovations Deserving Exploratory Analysis (IDEA) project refined and evaluated a test method, based on fracture mechanics, for predicting low temperature performance of asphalt binders. Fracture performance properties of selected asphalt binders from various pavement trial sections in Canada (particularly from Highway 655) along with additional commercial materials were determined. The ductile fracture properties varied by a significant amount with the mixture showing the highest essential work of fracture performing well in the field and those with lower works of fracture performing poorly. In contrast, the mixture performing best in the repeated compression tests at both 25 deg C and 40 deg C performed worst in service, suggesting that this test measures properties which show little relevance for fracture performance. Failure properties at low temperatures in both creep tests and controlled crack opening displacement tests were determined.