Download Free Aspects Of Soft Computing Intelligent Robotics And Control Book in PDF and EPUB Free Download. You can read online Aspects Of Soft Computing Intelligent Robotics And Control and write the review.

Soft computing, as a collection of techniques exploiting approximation and tolerance for imprecision and uncertainty in traditionally intractable problems, has become very effective and popular especially because of the synergy derived from its components. The integration of constituent technologies provides complementary methods that allow developing flexible computing tools and solving complex problems. A wide area of natural applications of soft computing techniques consists of the control of dynamic systems, including robots. Loosely speaking, control can be understood as driving a process to attain a desired goal. Intelligent control can be seen as an extension of this concept, to include autonomous human-like interactions of a machine with the environment. Intelligent robots can be characterized by the ability to operate in an uncertain, changing environment with the help of appropriate sensing. They have the power to autonomously plan and execute motion sequences to achieve a goal specified by a human user without detailed instructions. In this volume leading specialists address various theoretical and practical aspects in soft computing, intelligent robotics and control. The problems discussed are taken from fuzzy systems, neural networks, interactive evolutionary computation, intelligent mobile robotics, and intelligent control of linear and nonlinear dynamic systems.
Soft computing is a branch of computing which, unlike hard computing, can deal with uncertain, imprecise and inexact data. The three constituents of soft computing are fuzzy-logic-based computing, neurocomputing, and genetic algorithms. Fuzzy logic contributes the capability of approximate reasoning, neurocomputing offers function approximation and learning capabilities, and genetic algorithms provide a methodology for systematic random search and optimization. These three capabilities are combined in a complementary and synergetic fashion.This book presents a cohesive set of contributions dealing with important issues and applications of soft computing in systems and control technology. The contributions include state-of-the-art material, mathematical developments, fresh results, and how-to-do issues. Among the problems studied via neural, fuzzy, neurofuzzy and genetic methodologies are: data fusion, reinforcement learning, approximation properties, multichannel imaging, signal processing, system optimization, gaming, and several forms of control.The book can serve as a reference for researchers and practitioners in the field. Readers can find in it a large amount of useful and timely information, and thus save considerable effort in searching for other scattered literature.
In recent years, intelligent control has emerged as one of the most active and fruitful areas of research and development. Until now, however, there has been no comprehensive text that explores the subject with focus on the design and analysis of biological and industrial applications. Intelligent Control Systems Using Soft Computing Methodologies does all that and more. Beginning with an overview of intelligent control methodologies, the contributors present the fundamentals of neural networks, supervised and unsupervised learning, and recurrent networks. They address various implementation issues, then explore design and verification of neural networks for a variety of applications, including medicine, biology, digital signal processing, object recognition, computer networking, desalination technology, and oil refinery and chemical processes. The focus then shifts to fuzzy logic, with a review of the fundamental and theoretical aspects, discussion of implementation issues, and examples of applications, including control of autonomous underwater vehicles, navigation of space vehicles, image processing, robotics, and energy management systems. The book concludes with the integration of genetic algorithms into the paradigm of soft computing methodologies, including several more industrial examples, implementation issues, and open problems and open problems related to intelligent control technology. Suitable as a textbook or a reference, Intelligent Control Systems explores recent advances in the field from both the theoretical and the practical viewpoints. It also integrates intelligent control design methodologies to give designers a set of flexible, robust controllers and provide students with a tool for solving the examples and exercises within the book.
As robotic systems make their way into standard practice, they have opened the door to a wide spectrum of complex applications. Such applications usually demand that the robots be highly intelligent. Future robots are likely to have greater sensory capabilities, more intelligence, higher levels of manual dexter ity, and adequate mobility, compared to humans. In order to ensure high-quality control and performance in robotics, new intelligent control techniques must be developed, which are capable of coping with task complexity, multi-objective decision making, large volumes of perception data and substantial amounts of heuristic information. Hence, the pursuit of intelligent autonomous robotic systems has been a topic of much fascinating research in recent years. On the other hand, as emerging technologies, Soft Computing paradigms consisting of complementary elements of Fuzzy Logic, Neural Computing and Evolutionary Computation are viewed as the most promising methods towards intelligent robotic systems. Due to their strong learning and cognitive ability and good tolerance of uncertainty and imprecision, Soft Computing techniques have found wide application in the area of intelligent control of robotic systems.
Soft computing, intelligent robotics and control are in the core interest of contemporary engineering. Essential characteristics of soft computing methods are the ability to handle vague information, to apply human-like reasoning, their learning capability and ease of application. Soft computing techniques are widely applied in the control of dynamic systems, including mobile robots. The present volume is a collection of 20 chapters written by respectable experts of the fields, addressing various theoretical and practical aspects in soft computing, intelligent robotics and control. The first part of the book concerns with issues of intelligent robotics, including robust xed point transformation design, experimental verification of the input-output feedback linearization of differentially driven mobile robot and applying kinematic synthesis to micro electro-mechanical systems design. The second part of the book is devoted to fundamental aspects of soft computing. This includes practical aspects of fuzzy rule interpolation, subjective weights based meta learning in multi criteria decision making, swarm-based heuristics for an area exploration and knowledge driven adaptive product representations. The last part addresses different problems, issues and methods of applied mathematics. This includes perturbation estimates for invariant subspaces of Hessenberg matrices, uncertainty and nonlinearity modelling by probabilistic metric spaces and comparison and visualization of the DNA of six primates.
With the increasing applications of intelligent robotic systems in various ?elds, the - sign and control of these systems have increasingly attracted interest from researchers. This edited book entitled “Design and Control of Intelligent Robotic Systems” in the book series of “Studies in Computational Intelligence” is a collection of some advanced research on design and control of intelligent robots. The works presented range in scope from design methodologies to robot development. Various design approaches and al- rithms, such as evolutionary computation, neural networks, fuzzy logic, learning, etc. are included. We also would like to mention that most studies reported in this book have been implemented in physical systems. An overview on the applications of computational intelligence in bio-inspired robotics is given in Chapter 1 by M. Begum and F. Karray, with highlights of the recent progress in bio-inspired robotics research and a focus on the usage of computational intelligence tools to design human-like cognitive abilities in the robotic systems. In Chapter 2, Lisa L. Grant and Ganesh K. Venayagamoorthy present greedy search, particle swarm optimization and fuzzy logic based strategies for navigating a swarm of robots for target search in a hazardous environment, with potential applications in high-risk tasks such as disaster recovery and hazardous material detection.
The term “soft computing” applies to variants of and combinations under the four broad categories of evolutionary computing, neural networks, fuzzy logic, and Bayesian statistics. Although each one has its separate strengths, the complem- tary nature of these techniques when used in combination (hybrid) makes them a powerful alternative for solving complex problems where conventional mat- matical methods fail. The use of intelligent and soft computing techniques in the field of geo- chanical and pavement engineering has steadily increased over the past decade owing to their ability to admit approximate reasoning, imprecision, uncertainty and partial truth. Since real-life infrastructure engineering decisions are made in ambiguous environments that require human expertise, the application of soft computing techniques has been an attractive option in pavement and geomecha- cal modeling. The objective of this carefully edited book is to highlight key recent advances made in the application of soft computing techniques in pavement and geo- chanical systems. Soft computing techniques discussed in this book include, but are not limited to: neural networks, evolutionary computing, swarm intelligence, probabilistic modeling, kernel machines, knowledge discovery and data mining, neuro-fuzzy systems and hybrid approaches. Highlighted application areas include infrastructure materials modeling, pavement analysis and design, rapid interpre- tion of nondestructive testing results, porous asphalt concrete distress modeling, model parameter identification, pavement engineering inversion problems, s- grade soils characterization, and backcalculation of pavement layer thickness and moduli.
New approaches are needed that could move us towards developing effective applicable intelligent systems for problem solving and decision making, One of the main efforts in intelligent systems development is focused on knowledge and information management which is regarded as the crucial issue in smart decision making support. The 14 Chapters of this book represent a sample of such effort. The overall aim of this book is to provide guidelines to develop tools for smart processing of knowledge and information. Still, the guide does not presume to give ultimate answers. Rather, it poses ideas and case studies to explore the complexities and challenges of modern knowledge management issues. It also encourages its reader to become aware of the multifaceted interdisciplinary character of such issues. The premise of this book is that its reader will leave it with a heightened ability to think - in different ways - about developing, evaluating, and supporting intelligent knowledge and information management systems in real life based environment.
We describe in this book, new methods for evolutionary design of intelligent s- tems using soft computing and their applications in modeling, simulation and c- trol. Soft Computing (SC) consists of several intelligent computing paradigms, including fuzzy logic, neural networks, and evolutionary algorithms, which can be used to produce powerful hybrid intelligent systems. The book is organized in four main parts, which contain a group of papers around a similar subject. The first part consists of papers with the main theme of evolutionary design of fuzzy systems in intelligent control, which consists of papers that propose new methods for designing and optimizing intelligent controllers for different applications. The second part c- tains papers with the main theme of evolutionary design of intelligent systems for pattern recognition applications, which are basically papers using evolutionary al- rithms for optimizing modular neural networks with fuzzy systems for response - tegration, for achieving pattern recognition in different applications. The third part contains papers with the themes of models for learning and social simulation, which are papers that apply intelligent systems to the problems of designing learning - jects and social agents. The fourth part contains papers that deal with intelligent s- tems in robotics applications and hardware implementations. In the part of Intelligent Control there are 5 papers that describe different c- tributions on evolutionary optimization of fuzzy systems in intelligent control. The first paper, by Ricardo Martinez-Marroquin et al.
This book of Advances in Intelligent and Soft Computing contains accepted papers presented at SOCO 2023 conference held in the beautiful and historic city of Salamanca (Spain) in September 2023. Soft computing represents a collection or set of computational techniques in machine learning, computer science, and some engineering disciplines, which investigate, simulate, and analyze very complex issues and phenomena. After a through peer-review process, the 18th SOCO 2023 International Program Committee selected 61 papers which are published in these conference proceedings and represents an acceptance rate of 60%. In this relevant edition, a particular emphasis was put on the organization of special sessions. Seven special sessions were organized related to relevant topics such as: Time Series Forecasting in Industrial and Environmental Applications, Technological Foundations and Advanced Applications of Drone Systems, Soft Computing Methods in Manufacturing and Management Systems, Efficiency and Explainability in Machine Learning and Soft Computing, Machine Learning and Computer Vision in Industry 4.0, Genetic and Evolutionary Computation in Real World and Industry, and Soft Computing and Hard Computing for a Data Science Process Model. The selection of papers was extremely rigorous to maintain the high quality of the conference. We want to thank the members of the Program Committees for their hard work during the reviewing process. This is a crucial process for creating a high-standard conference; the SOCO conference would not exist without their help.