Download Free Artificial Recharge Of Groundwater Book in PDF and EPUB Free Download. You can read online Artificial Recharge Of Groundwater and write the review.

Artificial Recharge of Groundwater focuses on artificial recharge of groundwater basins as a means to increase the natural supply of groundwater, along with the technical issues involved. Special emphasis is placed on the use of reclaimed municipal wastewater as a source for artificial recharge of groundwater. This book is comprised of 26 chapters organized into five sections. After reviewing the state of the art of artificial recharge of groundwater, the discussion turns to the fundamental aspects of groundwater recharge, including the role of artificial recharge in groundwater basin management, recharge methods, hydraulics, monitoring, and modeling. The next section considers pretreatment processes for wastewater and renovation of wastewater with rapid-infiltration land treatment systems and describes the health effects of wastewater reuse in groundwater recharge. A number of artificial recharge operations using reclaimed wastewater are then highlighted, focusing on cases in various countries including Israel, Germany, Poland, Japan, the Netherlands, and the United States. The remaining chapters look at the extent of contaminant removal by the soil system and the fate of micropollutants during groundwater recharge as well as the legal and economic aspects of groundwater recharge. Research needs for groundwater quality management are also explored. This monograph is written for civil and sanitary engineers, agricultural engineers, hydrologists, environmental scientists, and research scientists as well as public works officials, consulting engineers, agriculturalists, industrialists, and students at colleges and universities.
As demand for water increases, water managers and planners will need to look widely for ways to improve water management and augment water supplies. This book concludes that artificial recharge can be one option in an integrated strategy to optimize total water resource management and that in some cases impaired-quality water can be used effectively as a source for artificial recharge of ground water aquifers. Source water quality characteristics, pretreatment and recharge technologies, transformations during transport through the soil and aquifer, public health issues, economic feasibility, and legal and institutional considerations are addressed. The book evaluates three main types of impaired quality water sourcesâ€"treated municipal wastewater, stormwater runoff, and irrigation return flowâ€"and describes which is the most consistent in terms of quality and quantity. Also included are descriptions of seven recharge projects.
Standard Guidelines for Artificial Recharge of Ground Water describes the steps necessary to plan, design, construct, maintain, operate, and close a project for artificial recharge of groundwater. The recharge may be accomplished either by applying water to the ground surface for infiltration or by placing it directly into aquifers through wells. This Standard also describes the economic, environmental, and legal considerations, including water rights, laws, and regulations, as well as field investigation and testing procedures that may be applicable. The guidelines cover situations that may occur in many different types of projects and can be applied to basic or small projects by selecting the portions of these guidelines that are appropriate to the proposed project.
GIS and Geostatistical Techniques for Groundwater Science provides a detailed synthesis of the application of GIS and geostatistics in groundwater studies. As the book illustrates, GIS can be a powerful tool for developing solutions for water resource problems, assessing water quality, and managing water resources. Beginning with an introduction to the history of GIS and geostatistical techniques in groundwater studies, the book then describes various spatial techniques, including case studies for various applications, from quality assessment, to resource management. This book assembles the most up-to-date techniques in GIS and geostatistics as they relate to groundwater, one of our most important natural resources. - Provides details on the application of GIS and statistics in groundwater studies - Includes practical coverage of the use of spatial analysis techniques in groundwater science - Bridges the gap between geostatistics and GIS as it relates to groundwater science and management - Offers worldwide case studies to illustrate various techniques and applications in addressing groundwater issues
In view of the rapidly expanding urban, industrial and agri cultural water requirements in many areas and the normally associated critical unreliability of surface water supplies in arid and semi-arid zones, groundwater exploration and use is of fundamental importance for logical economic development. Two interrelated facets should be evident in all such groundwater projects : (a) definition of groundwater recharge mechanisms and characteristics for identified geological formations, in order to determine whether exploitation in the long-term involves 'mining' of an es sentially 'fossil' resource or withdrawal from a dynamic supply. A solution to this aspect is essential for development of a re source management policy: (b) determination of recharge variability in time and space to thus enable determination of total aquifer input and to quantify such practical aspects as 'minimum risk' waste disposal locations and artificial recharge potential via (e.g.) devegetation or engi neering works. However, current international developments relating to natural recharge indicate the following 'problems' ; no single comprehensive estimation technique can yet be iden tified from the spectrum of methods available; all are reported to give suspect results.
Understanding groundwater recharge is essential for successful management of water resources and modeling fluid and contaminant transport within the subsurface. This book provides a critical evaluation of the theory and assumptions that underlie methods for estimating rates of groundwater recharge. Detailed explanations of the methods are provided - allowing readers to apply many of the techniques themselves without needing to consult additional references. Numerous practical examples highlight benefits and limitations of each method. Approximately 900 references allow advanced practitioners to pursue additional information on any method. For the first time, theoretical and practical considerations for selecting and applying methods for estimating groundwater recharge are covered in a single volume with uniform presentation. Hydrogeologists, water-resource specialists, civil and agricultural engineers, earth and environmental scientists and agronomists will benefit from this informative and practical book. It can serve as the primary text for a graduate-level course on groundwater recharge or as an adjunct text for courses on groundwater hydrology or hydrogeology. For the benefit of students and instructors, problem sets of varying difficulty are available at http://wwwbrr.cr.usgs.gov/projects/GW_Unsat/Recharge_Book/.
Applications in Hydrogeology for Geoscientists presents the most recent scientific developments in the field that are accessible yet rigorous enough for industry professionals and academic researchers alike. A multi-contributed reference that features the knowledge and experience of the field's experts, the book's chapters span the full scope of hydrogeology, introducing new approaches and progress in conceptualization, simulation of groundwater flow and transport, and progressive hydro-geophysical methods. Each chapter includes examples of recent developments in hydrogeology, groundwater, and hydrology that are underscored with perspectives regarding the challenges that are facing industry professionals, researchers, and academia. Several sub-themes—including theoretical advances in conceptualization and modeling of hydro-geologic challenges—connect the chapters and weave the topics together holistically. Advances in research are aided by insights arising from observations from both field and laboratory work. - Introduces new approaches and progress in hydrogeology, including conceptualization, simulated groundwater flow and transport, and cutting edge hydro-geophysical methods - Features more than 100 figures, diagrams, and illustrations to highlight major themes and aid in the retention of key concepts - Presents a holistic approach to advances in hydrogeology, from the most recent developments in reservoirs and hydraulics to analytic modeling of transient multi-layer flow and aquifer flow theory - Integrates real life data, examples and processes, making the content practical and immediately implementable
Groundwater Hydrology of Water Resource Series - Water is an essential environmental resource and one that needs to be properly managed. As the world places more emphasis on sustainable water supplies, the demand for expertise in hydrology and water resources continues to increase. This series is intended for professional engineers, who seek a firm foundation in hydrology and an ability to apply this knowledge to solve problems in water resource management. Future books in the series are: Groudwater Hydrology of Springs (2009), Groudwater Hydrology of River Basins (2009), Groudwater Hydrology of Aquifers (2010), and Groudwater Hydrology of Wetlands (2010). First utilized as a primary source of drinking water in the ancient world, springs continue to supply many of the world's cities with water. In recent years their long-term sustainability is under pressure due to an increased demand from groundwater users. Edited by two world-renowned hydrologists, Groundwater Hydrology of Springs: Theory, Management, and Sustainability will provide civil and environmental engineers with a comprehensive reference for managing and sustaining the water quality of Springs. With contributions from experts from around the world, this book cover many of the world's largest springs, providing a unique global perspective on how engineers around the world are utilizing engineering principles for coping with problems such as: mismanagement, overexploitation and their impacts both water quantity and quality. The book will be divided into two parts: part one will explain the theory and principles of hydrology as they apply to Springs while part two will provide a rare look into the engineering practices used to manage some of the most important Springs from around the world. - Description of the spring and the aquifer feeding it - Latest groundwater and contaminant transport models - Description of sources of aquifer use - Understanding of contamination and/or possible contamination - A plan for management and sustainability