Download Free Artificial Intelligence Techniques For Computer Graphics Book in PDF and EPUB Free Download. You can read online Artificial Intelligence Techniques For Computer Graphics and write the review.

The purpose of this volume is to present current work of the Intelligent Computer Graphics community, a community growing up year after year. Indeed, if at the beg- ning of Computer Graphics the use of Artificial Intelligence techniques was quite unknown, more and more researchers all over the world are nowadays interested in intelligent techniques allowing substantial improvements of traditional Computer Graphics methods. The other main contribution of intelligent techniques in Computer Graphics is to allow invention of completely new methods, often based on automation of a lot of tasks assumed in the past by the user in an imprecise and (human) time consuming manner. The history of research in Computer Graphics is very edifying. At the beginning, due to the slowness of computers in the years 1960, the unique research concern was visualisation. The purpose of Computer Graphics researchers was to find new visua- sation algorithms, less and less time consuming, in order to reduce the enormous time required for visualisation. A lot of interesting algorithms were invented during these first years of research in Computer Graphics. The scenes to be displayed were very simple because the computing power of computers was very low. So, scene modelling was not necessary and scenes were designed directly by the user, who had to give co-ordinates of vertices of scene polygons.
Driven by the demands of research and the entertainment industry, the techniques of animation are pushed to render increasingly complex objects with ever-greater life-like appearance and motion. This rapid progression of knowledge and technique impacts professional developers, as well as students. Developers must maintain their understanding of conceptual foundations, while their animation tools become ever more complex and specialized. The second edition of Rick Parent's Computer Animation is an excellent resource for the designers who must meet this challenge. The first edition established its reputation as the best technically oriented animation text. This new edition focuses on the many recent developments in animation technology, including fluid animation, human figure animation, and soft body animation. The new edition revises and expands coverage of topics such as quaternions, natural phenomenon, facial animation, and inverse kinematics. The book includes up-to-date discussions of Maya scripting and the Maya C++ API, programming on real-time 3D graphics hardware, collision detection, motion capture, and motion capture data processing. - New up-to-the-moment coverage of hot topics like real-time 3D graphics, collision detection, fluid and soft-body animation and more! - Companion site with animation clips drawn from research & entertainment and code samples - Describes the mathematical and algorithmic foundations of animation that provide the animator with a deep understanding and control of technique
Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics presents a new approach to numerical analysis for modern computer scientists. Using examples from a broad base of computational tasks, including data processing, computational photography, and animation, the textbook introduces numerical modeling and algorithmic desig
We are both fans of watching animated stories. Every evening, before or after d- ner, we always sit in front of the television and watch the animation program, which is originally produced and shown for children. We find ourselves becoming younger while immerged in the interesting plot of the animation: how the princess is first killed and then rescued, how the little rat defeats the big cat, etc. But what we have found in those animation programs are not only interesting plots, but also a big chance for the application of computer science and artificial intelligence techniques. As is well known, the cost of producing animated movies is very high, even with the use of computer graphics techniques. Turning a story in text form into an animated movie is a long and complicated procedure. We came to the c- clusion that many parts of this process could be automated by using artificial - telligence techniques. It is actually a challenge and test for machine intelligence. So we decided to explore the possibility of a full life cycle automation of c- puter animation generation. By full life cycle we mean the generation process of computer animation from a children s story in natural language text form to the final animated movie. It is of course a task of immense difficulty. However, we decided to try our best and to see how far we could go.
In this book, three main notions will be used in the editors search of improvements in various areas of computer graphics: Artificial Intelligence, Viewpoint Complexity and Human Intelligence. Several Artificial Intelligence techniques are used in presented intelligent scene modelers, mainly declarative ones. Among them, the mostly used techniques are Expert systems, Constraint Satisfaction Problem resolution and Machine-learning. The notion of viewpoint complexity, that is complexity of a scene seen from a given viewpoint, will be used in improvement proposals for a lot of computer graphics problems like scene understanding, virtual world exploration, image-based modeling and rendering, ray tracing and radiosity. Very often, viewpoint complexity is used in conjunction with Artificial Intelligence techniques like Heuristic search and Problem resolution. The notions of artificial Intelligence and Viewpoint Complexity may help to automatically resolve a big number of computer graphics problems. However, there are special situations where is required to find a particular solution for each situation. In such a case, human intelligence has to replace, or to be combined with, artificial intelligence. Such cases, and proposed solutions are also presented in this book.
Focusing exclusively on Image-Based Rendering (IBR) this book examines the theory, practice, and applications associated with image-based rendering and modeling. Topics covered vary from IBR basic concepts and representations on the theory side to signal processing and data compression on the practical side. One of the only titles devoted exclusively to IBR this book is intended for researchers, professionals, and general readers interested in the topics of computer graphics, computer vision, image process, and video processing. With this book advanced-level students in EECS studying related disciplines will be able to seriously expand their knowledge about image-based rendering.
This book constitutes the refereed proceedings of the 36th Computer Graphics International Conference, CGI 2019, held in Calgary, AB, Canada, in June 2019. The 30 revised full papers presented together with 28 short papers were carefully reviewed and selected from 231 submissions. The papers address topics such as: 3D reconstruction and rendering, virtual reality and augmented reality, computer animation, geometric modelling, geometric computing, shape and surface modelling, visual analytics, image processing, pattern recognition, motion planning, gait and activity biometric recognition, machine learning for graphics and applications in security, smart electronics, autonomous navigation systems, robotics, geographical information systems, and medicine and art.
Nowadays, intelligent techniques are more and more used in Computer Graphics in order to optimise the processing time, to find more accurate solutions for a lot of Computer Graphics problems, than with traditional methods, or simply to find solutions in problems where traditional methods fail. The purpose of this volume is to present current work of the Intelligent Computer Graphics community, a community growing up year after year. This volume is a kind of continuation of the previously published Springer volumes “Artificial Intelligence Techniques for Computer Graphics” (2008) and “Intelligent Computer Graphics 2009” (2009). This volume contains selected extended papers from the last 3IA Conference (3IA’2010), which has been held in Athens (Greece) in May 2010. This year papers are particularly exciting and concern areas like rendering, viewpoint quality, data visualisation, vision, computational aesthetics, scene understanding, intelligent lighting, declarative modelling, GIS, scene reconstruction and other important themes.
Creating robust artificial intelligence is one of the greatest challenges for game developers, yet the commercial success of a game is often dependent upon the quality of the AI. In this book, Ian Millington brings extensive professional experience to the problem of improving the quality of AI in games. He describes numerous examples from real games and explores the underlying ideas through detailed case studies. He goes further to introduce many techniques little used by developers today. The book's associated web site contains a library of C++ source code and demonstration programs, and a complete commercial source code library of AI algorithms and techniques. "Artificial Intelligence for Games - 2nd edition" will be highly useful to academics teaching courses on game AI, in that it includes exercises with each chapter. It will also include new and expanded coverage of the following: AI-oriented gameplay; Behavior driven AI; Casual games (puzzle games). Key Features * The first comprehensive, professional tutorial and reference to implement true AI in games written by an engineer with extensive industry experience. * Walks through the entire development process from beginning to end. * Includes examples from over 100 real games, 10 in-depth case studies, and web site with sample code.