Download Free Artificial Intelligence In Process Engineering Book in PDF and EPUB Free Download. You can read online Artificial Intelligence In Process Engineering and write the review.

Artificial Intelligence in Process Engineering aims to present a diverse sample of Artificial Intelligence (AI) applications in process engineering. The book contains contributions, selected by the editors based on educational value and diversity of AI methods and process engineering application domains. Topics discussed in the text include the use of qualitative reasoning for modeling and simulation of chemical systems; the use of qualitative models in discrete event simulation to analyze malfunctions in processing systems; and the diagnosis of faults in processes that are controlled by Programmable Logic Controllers. There are also debates on the issue of quantitative versus qualitative information. The control of batch processes, a design of a system that synthesizes bioseparation processes, and process design in the domain of chemical (rather than biochemical) systems are likewise covered in the text. This publication will be of value to industrial engineers and process engineers and researchers.
Applications of Artificial Intelligence in Process Systems Engineering offers a broad perspective on the issues related to artificial intelligence technologies and their applications in chemical and process engineering. The book comprehensively introduces the methodology and applications of AI technologies in process systems engineering, making it an indispensable reference for researchers and students. As chemical processes and systems are usually non-linear and complex, thus making it challenging to apply AI methods and technologies, this book is an ideal resource on emerging areas such as cloud computing, big data, the industrial Internet of Things and deep learning. With process systems engineering's potential to become one of the driving forces for the development of AI technologies, this book covers all the right bases. - Explains the concept of machine learning, deep learning and state-of-the-art intelligent algorithms - Discusses AI-based applications in process modeling and simulation, process integration and optimization, process control, and fault detection and diagnosis - Gives direction to future development trends of AI technologies in chemical and process engineering
Artificial intelligence (AI) is the part of computer science concerned with designing intelligent computer systems (systems that exhibit characteristics we associate with intelligence in human behavior). This book is the first published textbook of AI in chemical engineering, and provides broad and in-depth coverage of AI programming, AI principles, expert systems, and neural networks in chemical engineering. This book introduces the computational means and methodologies that are used to enable computers to perform intelligent engineering tasks. A key goal is to move beyond the principles of AI into its applications in chemical engineering. After reading this book, a chemical engineer will have a firm grounding in AI, know what chemical engineering applications of AI exist today, and understand the current challenges facing AI in engineering. - Allows the reader to learn AI quickly using inexpensive personal computers - Contains a large number of illustrative examples, simple exercises, and complex practice problems and solutions - Includes a computer diskette for an illustrated case study - Demonstrates an expert system for separation synthesis (EXSEP) - Presents a detailed review of published literature on expert systems and neural networks in chemical engineering
This book provides a broad overview of the benefits from a Systems Engineering design philosophy in architecting complex systems composed of artificial intelligence (AI), machine learning (ML) and humans situated in chaotic environments. The major topics include emergence, verification and validation of systems using AI/ML and human systems integration to develop robust and effective human-machine teams—where the machines may have varying degrees of autonomy due to the sophistication of their embedded AI/ML. The chapters not only describe what has been learned, but also raise questions that must be answered to further advance the general Science of Autonomy. The science of how humans and machines operate as a team requires insights from, among others, disciplines such as the social sciences, national and international jurisprudence, ethics and policy, and sociology and psychology. The social sciences inform how context is constructed, how trust is affected when humans and machines depend upon each other and how human-machine teams need a shared language of explanation. National and international jurisprudence determine legal responsibilities of non-trivial human-machine failures, ethical standards shape global policy, and sociology provides a basis for understanding team norms across cultures. Insights from psychology may help us to understand the negative impact on humans if AI/ML based machines begin to outperform their human teammates and consequently diminish their value or importance. This book invites professionals and the curious alike to witness a new frontier open as the Science of Autonomy emerges.
Artificial Intelligence in Mechanical and Industrial Engineering offers a unified platform for the dissemination of basic and applied knowledge on the integration of artificial intelligence within the realm of mechanical and industrial engineering. The book covers the tools and information needed to build successful careers and a source of knowledge for those working with AI within these domains. The book offers a systematic approach to explicate fundamentals as well as recent advances. It incorporates various case studies for major topics as well as numerous examples. It will also include real-time intelligent automation and associated supporting methodologies and techniques, and cover decision-support systems, as well as applications of Chaos Theory and Fractals. The book will give scientists, researchers, instructors, students, and practitioners the tools and information needed to build successful careers and to be an impetus to advancements in next-generation mechanical and industrial engineering domains.
The first guide to compile current research and frontline developments in the science of process intensification (PI), Re-Engineering the Chemical Processing Plant illustrates the design, integration, and application of PI principles and structures for the development and optimization of chemical and industrial plants. This volume updates professionals on emerging PI equipment and methodologies to promote technological advances and operational efficacy in chemical, biochemical, and engineering environments and presents clear examples illustrating the implementation and application of specific process-intensifying equipment and methods in various commercial arenas.
This book highlights the latest technologies and applications of Artificial Intelligence (AI) in the domain of construction engineering and management. The construction industry worldwide has been a late bloomer to adopting digital technology, where construction projects are predominantly managed with a heavy reliance on the knowledge and experience of construction professionals. AI works by combining large amounts of data with fast, iterative processing, and intelligent algorithms (e.g., neural networks, process mining, and deep learning), allowing the computer to learn automatically from patterns or features in the data. It provides a wide range of solutions to address many challenging construction problems, such as knowledge discovery, risk estimates, root cause analysis, damage assessment and prediction, and defect detection. A tremendous transformation has taken place in the past years with the emerging applications of AI. This enables industrial participants to operate projects more efficiently and safely, not only increasing the automation and productivity in construction but also enhancing the competitiveness globally.
Software is an integral part of our lives today. Modern software systems are highly complex and often pose new challenges in different aspects of Software Engineering (SE).Artificial Intelligence (AI) is a growing field in computer science that has been proven effective in applying and developing AI techniques to address various SE challenges.This unique compendium covers applications of state-of-the-art AI techniques to the key areas of SE (design, development, debugging, testing, etc).All the materials presented are up-to-date. This reference text will benefit researchers, academics, professionals, and postgraduate students in AI, machine learning and software engineering.Related Link(s)
Create the personalized and compelling experiences that today's customers expect by harnessing AI and digital technologies to create smart connected products, with this cutting-edge guide from senior leaders at Accenture. Digital technology is both friend and foe: highly disruptive, yet it cannot be ignored. As traditional products transform into smart connected products faster than ever before, companies that fail to make use of it now put themselves in the firing line for disintermediation or even eradication. However, digital technology is also the biggest opportunity for product-making businesses to create the next generation of goods in the marketplace. In Reinventing the Product, Eric Schaeffer and David Sovie, both Senior Managing Directors at Accenture, show how this reinvention is made possible, to deliver truly intelligent, and often even autonomous, products. Reinventing the Product makes the case for companies to rethink their product strategy, innovation and engineering processes, including: - How to harness the opportunities of AI and digital technologies, such as IoT sensors, blockchain, advanced analytics, cloud and edge computing - Practical advice on transforming their entire culture to build the future of successful 'living products' - Features case studies from global organizations such as Faurecia, Signify, Symmons and Haier and interviews with thought leaders from top companies including Amazon, ABB, Tesla, Samsung and Google This book provides the only advice any product-making company needs as it embarks on, or accelerates, its digitization journey.
Applied Biomedical Engineering Using Artificial Intelligence and Cognitive Models focuses on the relationship between three different multidisciplinary branches of engineering: Biomedical Engineering, Cognitive Science and Computer Science through Artificial Intelligence models. These models will be used to study how the nervous system and musculoskeletal system obey movement orders from the brain, as well as the mental processes of the information during cognition when injuries and neurologic diseases are present in the human body. The interaction between these three areas are studied in this book with the objective of obtaining AI models on injuries and neurologic diseases of the human body, studying diseases of the brain, spine and the nerves that connect them with the musculoskeletal system. There are more than 600 diseases of the nervous system, including brain tumors, epilepsy, Parkinson's disease, stroke, and many others. These diseases affect the human cognitive system that sends orders from the central nervous system (CNS) through the peripheral nervous systems (PNS) to do tasks using the musculoskeletal system. These actions can be detected by many Bioinstruments (Biomedical Instruments) and cognitive device data, allowing us to apply AI using Machine Learning-Deep Learning-Cognitive Computing models through algorithms to analyze, detect, classify, and forecast the process of various illnesses, diseases, and injuries of the human body. Applied Biomedical Engineering Using Artificial Intelligence and Cognitive Models provides readers with the study of injuries, illness, and neurological diseases of the human body through Artificial Intelligence using Machine Learning (ML), Deep Learning (DL) and Cognitive Computing (CC) models based on algorithms developed with MATLAB® and IBM Watson®. Provides an introduction to Cognitive science, cognitive computing and human cognitive relation to help in the solution of AI Biomedical engineering problems Explain different Artificial Intelligence (AI) including evolutionary algorithms to emulate natural evolution, reinforced learning, Artificial Neural Network (ANN) type and cognitive learning and to obtain many AI models for Biomedical Engineering problems Includes coverage of the evolution Artificial Intelligence through Machine Learning (ML), Deep Learning (DL), Cognitive Computing (CC) using MATLAB® as a programming language with many add-on MATLAB® toolboxes, and AI based commercial products cloud services as: IBM (Cognitive Computing, IBM Watson®, IBM Watson Studio®, IBM Watson Studio Visual Recognition®), and others Provides the necessary tools to accelerate obtaining results for the analysis of injuries, illness, and neurologic diseases that can be detected through the static, kinetics and kinematics, and natural body language data and medical imaging techniques applying AI using ML-DL-CC algorithms with the objective of obtaining appropriate conclusions to create solutions that improve the quality of life of patients