Download Free Arteriogenesis Book in PDF and EPUB Free Download. You can read online Arteriogenesis and write the review.

Emphasizes the research activities of Germany’s Nauheim Institute of the Max Planck Society and its group of investigators both past and present, in the field of collateral artery growth. Incorporates a multidisciplinary in vivo approach to the study of arteriogenesis that includes molecular approaches with classical physiology and immunohistochemistry. Full color throughout and well illustrated.
Cardiovascular occlusive diseases, such as myocardial infarction or stroke, are still the major cause of morbidity and mortality worldwide and are, particularly during the SARS-CoV-2 pandemic, drastically increasing. Arteriogenesis, which describes the process of natural arterial bypass growth, is a tissue- and life-saving process, which is given to us by mother nature to compensate for the function of a stenosed coronary or peripheral artery non-invasively. Since our first investigations on the mechanisms of collateral artery growth, more than 20 years ago, a lot of progress has been made, which we aim to make accessible in the current book. We present the available animal models and share information on the used state of the art techniques. We describe how fluid shear stress, the trigger for arteriogenesis, is translated into biochemical signal transduction cascades, and we also highlight the functional role of extracellular RNA and Il10. We address the problematic features of arteriogenesis in patients suffering from diabetes mellitus, and provide an overview of currently available or potentially therapeutic approaches to promote arteriogenesis in patients. We focus on the combination of ultrasound and microbubbles, the permanent occlusion of the internal mammary arteries, and simple exercise training. We believe that we have come much closer to achieving our goal of understanding the mechanisms of arteriogenesis, enabling clinicians to promote collateral artery growth in patients and cure vascular occlusive diseases.
For many years, arteriogenesis, also called collateral formation, has been regarded as being a beneficial process to restore blood flow to distal tissues in occluded arteries. Therefore, it is frequently referred to in relation to therapeutic angiogenesis. Despite the big clinical potential and the many promising clinical trials on arteriogenesis and therapeutic angiogenesis, the exact molecular mechanisms involved in the multifactorial processes of arteriogenesis are still not completely understood. A better understanding is needed in order to define successful clinical therapies. In this Special Issue, multiple aspects of arteriogenesis and therapeutic angiogenesis will be addressed, ranging from the role of inflammatory processes and immune cells, to growth factors, microRNAs and environmental factors like hypoxia. Therapeutic angiogenesis will also be discussed in relation to the atherosclerosis and intraplaque angiogenesis in hypoxic lesions, as well as specific forms of arteriogenesis in relation to spinal cord blood supply and aorta surgery. The effects of exercise, a frequently prescribed therapy for PAD patients, on arteriogenesis are also discussed. Overall, the papers in this Special Issue on arteriogenesis and therapeutic angiogenesis provide important new insights in the underlying pathophysiological mechanism of these complex processes and may be helpful to define a successful future intervention directed at therapeutic angiogenesis.
The endothelium, a monolayer of endothelial cells, constitutes the inner cellular lining of the blood vessels (arteries, veins and capillaries) and the lymphatic system, and therefore is in direct contact with the blood/lymph and the circulating cells. The endothelium is a major player in the control of blood fluidity, platelet aggregation and vascular tone, a major actor in the regulation of immunology, inflammation and angiogenesis, and an important metabolizing and an endocrine organ. Endothelial cells controls vascular tone, and thereby blood flow, by synthesizing and releasing relaxing and contracting factors such as nitric oxide, metabolites of arachidonic acid via the cyclooxygenases, lipoxygenases and cytochrome P450 pathways, various peptides (endothelin, urotensin, CNP, adrenomedullin, etc.), adenosine, purines, reactive oxygen species and so on. Additionally, endothelial ectoenzymes are required steps in the generation of vasoactive hormones such as angiotensin II. An endothelial dysfunction linked to an imbalance in the synthesis and/or the release of these various endothelial factors may explain the initiation of cardiovascular pathologies (from hypertension to atherosclerosis) or their development and perpetuation. Table of Contents: Introduction / Multiple Functions of the Endothelial Cells / Calcium Signaling in Vascular Cells and Cell-to-Cell Communications / Endothelium-Dependent Regulation of Vascular Tone / Conclusion / References
​Vascular management and care has become a truly multidisciplinary enterprise as the number of specialists involved in the treatment of patients with vascular diseases has steadily increased. While in the past, treatments were delivered by individual specialists, in the twenty-first century a team approach is without doubt the most effective strategy. In order to promote professional excellence in this dynamic and rapidly evolving field, a shared knowledge base and interdisciplinary standards need to be established. Pan Vascular Medicine, 2nd edition has been designed to offer such an interdisciplinary platform, providing vascular specialists with state-of-the art descriptive and procedural knowledge. Basic science, diagnostics, and therapy are all comprehensively covered. In a series of succinct, clearly written chapters, renowned specialists introduce and comment on the current international guidelines and present up-to-date reviews of all aspects of vascular care.
Covers the topic of collateral circulation and its structure and function; its molecular mechanisms during the course of critical arterial stenosis; and how it can be stimulated by physical and growth factors. Animal models are covered in this volume as they reproduce the clinical situation in the laboratory. The book also contains mechanistic explanations of vascular growth that are reflected in numerous charts.
From molecule to man: Medical research has indeed taken this direction, and major improvements of our understanding of the pathophysiology and epidemiology of disease have been achieved. The molecular basis of the congenital cardiovascular disorders has been extended from relatively few congenital malformations into everyday illnesses such as diabetes mellitus, hyperlipoproteinaemea, and arterial hypertension. The monogenic and, more difficult, polygenic basis for a vast majority of cardiovascular disorders are being defined more precisely from year to year. This book gives an overview of what has been achieved so far and defines the current position.
The ESC Textbook of Vascular Biology is a rich and clearly laid-out guide by leading European scientists providing comprehensive information on vascular physiology, disease, and research.
Cell Cycle in the Central Nervous System overviews the changes in cell cycle as they relate to prenatal and post natal brain development, progression to neurological disease or tumor formation.Topics covered range from the cell cycle during the prenatal development of the mammalian central nervous system to future directions in postnatal neurogenesis through gene transfer, electrical stimulation, and stem cell introduction. Additional chapters examine the postnatal development of neurons and glia, the regulation of cell cycle in glia, and how that regulation may fail in pretumor conditions or following a nonneoplastic CNS response to injury. Highlights include treatments of the effects of deep brain stimulation on brain development and repair; the connection between the electrophysiological properties of neuroglia, cell cycle, and tumor progression; and the varied immunological responses and their regulation by cell cycle.
Translational Research in Coronary Artery Disease: Pathophysiology to Treatment covers the entire spectrum of basic science, genetics, drug treatment, and interventions for coronary artery disease. With an emphasis on vascular biology, this reference fully explains the fundamental aspects of coronary artery disease pathophysiology. Included are important topics, including endothelial function, endothelial injury, and endothelial repair in various disease states, vascular smooth muscle function and its interaction with the endothelium, and the interrelationship between inflammatory biology and vascular function. By providing this synthesis of current research literature, this reference allows the cardiovascular scientist and practitioner to access everything they need from one source. - Provides a concise summary of recent developments in coronary and vascular research, including previously unpublished data - Summarizes in-depth discussions of the pathobiology and novel treatment strategies for coronary artery disease - Provides access to an accompanying website that contains photos and videos of noninvasive diagnostic modalities for evaluation of coronary artery disease