Download Free Arithmetical Rings And Endomorphisms Book in PDF and EPUB Free Download. You can read online Arithmetical Rings And Endomorphisms and write the review.

This book offers a comprehensive account of not necessarily commutative arithmetical rings, examining structural and homological properties of modules over arithmetical rings and summarising the interplay between arithmetical rings and other rings, whereas modules with extension properties of submodule endomorphisms are also studied in detail. Graduate students and researchers in ring and module theory will find this book particularly valuable.
This book offers a comprehensive account of not necessarily commutative arithmetical rings, examining structural and homological properties of modules over arithmetical rings and summarising the interplay between arithmetical rings and other rings, whereas modules with extension properties of submodule endomorphisms are also studied in detail. Graduate students and researchers in ring and module theory will find this book particularly valuable.
In this book, ring-theoretical properties of skew Laurent series rings A((x; φ)) over a ring A, where A is an associative ring with non-zero identity element are described. In addition, we consider Laurent rings and Malcev-Neumann rings, which are proper extensions of skew Laurent series rings.
This book considers the so-called Unlikely Intersections, a topic that embraces well-known issues, such as Lang's and Manin-Mumford's, concerning torsion points in subvarieties of tori or abelian varieties. More generally, the book considers algebraic subgroups that meet a given subvariety in a set of unlikely dimension. The book is an expansion of the Hermann Weyl Lectures delivered by Umberto Zannier at the Institute for Advanced Study in Princeton in May 2010. The book consists of four chapters and seven brief appendixes, the last six by David Masser. The first chapter considers multiplicative algebraic groups, presenting proofs of several developments, ranging from the origins to recent results, and discussing many applications and relations with other contexts. The second chapter considers an analogue in arithmetic and several applications of this. The third chapter introduces a new method for approaching some of these questions, and presents a detailed application of this (by Masser and the author) to a relative case of the Manin-Mumford issue. The fourth chapter focuses on the André-Oort conjecture (outlining work by Pila).
Handbook of Algebra
Presents the proceedings of the Second International Conference on Commutative Ring Theory in Fes, Morocco. The text details developments in commutative algebra, highlighting the theory of rings and ideals. It explores commutative algebra's connections with and applications to topological algebra and algebraic geometry.
The main aim of this book is to study the concept of multiplication objects from a categorical point of view, namely, in the setting of monoidal categories which are responsible for the narrow relationship between quantum groups and knot theory. At the same time, the book brings together the literature on multiplication modules and rings, which has been scattered to date. This book organises and exposes them in a categorical framework by using functorial techniques. Multiplication modules and rings are framed inside commutative algebra, which is a basis for number theory and algebraic geometry. These include families of rings very important in ideal arithmetic such as regular von Neumann rings, Dedekind domains, hereditary rings or special primary rings. In the relative case, i.e., multiplication modules and rings with respect to a hereditary torsion theory, the most significant example is that of Krull domains (with respect to the classical torsion theory). As a consequence, we have an adequate setting to consider divisorial properties. As for the graded concept, it is possible to examine deep in the study of arithmetically graded rings such as generalized Rees rings, graded Dedekind domains, twisted group rings, etc. The book points out some different possibilities to deal with the topic, for example, semiring theory, lattice theory, comodule theory, etc.
This book provides an exposition of function field arithmetic with emphasis on recent developments concerning Drinfeld modules, the arithmetic of special values of transcendental functions (such as zeta and gamma functions and their interpolations), diophantine approximation and related interesting open problems. While it covers many topics treated in 'Basic Structures of Function Field Arithmetic' by David Goss, it complements that book with the inclusion of recent developments as well as the treatment of new topics such as diophantine approximation, hypergeometric functions, modular forms, transcendence, automata and solitons. There is also new work on multizeta values and log-algebraicity. The author has included numerous worked-out examples. Many open problems, which can serve as good thesis problems, are discussed.