Download Free Arboreal Life The Evolution Book in PDF and EPUB Free Download. You can read online Arboreal Life The Evolution and write the review.

Primate Adaptation and Evolutionis the only recent text published in this rapidly progressing field. It provides you with an extensive, current survey of the order Primates, both living and fossil. By combining information on primate anatomy, ecology, and behavior with the primate fossil record, this book enables students to study primates from all epochs as a single, viable group. It surveys major primate radiations throughout 65 million years, and provides equal treatment of both living and extinct species.ï Presents a summary of the primate fossilsï Reviews primate evolutionï Provides an introduction to the primate anatomyï Discusses the features that distinguish the living groups of primatesï Summarizes recent work on primate ecology
Tree shrews are small-bodied, scansorial, squirrel-like mammals that occupy a wide range of arboreal, semi-arboreal, and forest floor niches in Southeast Asia and adjacent islands. Comparative aspects of tree shrew biology have been the subject of extensive investigations during the past two decades. These studies were initiated in part because of the widely accepted belief that tupaiids are primitive primates, and, as such, might provide valuable insight into the evolutionary origin of complex patterns of primate behavior, locomotion, neurobiology, and reproduction. During the same period, there has been a renewed interest in the methodology of phylogenetic reconstruction and in the use of data from a variety of biological disciplines to test or formulate hypotheses of evolutionary relationships. In particular, interest in the com parative and systematic biology of mammals has focused on analysis of phy logenetic relationships among Primates and a search for their closest relatives. Assessment of the possible primate affinities of tree shrews has comprised an important part of these studies, and a considerable amount of dental, cranio skeletal, neuroanatomical, reproductive, developmental, and molecular evi dence has been marshalled to either corroborate or refute hypotheses of a special tupaiid-primate relationship. These contrasting viewpoints have re sulted from differing interpretations of the basic data, as well as alternative approaches to the evolutionary analysis of data.
The study of primate locomotion is a unique discipline that by its nature is interdis ciplinary, drawing on and integrating research from ethology, ecology, comparative anat omy, physiology, biomechanics, paleontology, etc. When combined and focused on particular problems this diversity of approaches permits unparalleled insight into critical aspects of our evolutionary past and into a major component of the behavioral repertoire of all animals. Unfortunately, because of the structure of academia, integration of these different approaches is a rare phenomenon. For instance, papers on primate behavior tend to be published in separate specialist journals and read by subgroups of anthropologists and zoologists, thus precluding critical syntheses. In the spring of 1995 we overcame this compartmentalization by organizing a con ference that brought together experts with many different perspectives on primate locomo tion to address the current state of the field and to consider where we go from here. The conference, Primate Locomotion-1995, took place thirty years after the pioneering confer ence on the same topic that was convened by the late Warren G. Kinzey at Davis in 1965.
A major new book overturning our assumptions about how evolution works Earth’s natural history is full of fascinating instances of convergence: phenomena like eyes and wings and tree-climbing lizards that have evolved independently, multiple times. But evolutionary biologists also point out many examples of contingency, cases where the tiniest change—a random mutation or an ancient butterfly sneeze—caused evolution to take a completely different course. What role does each force really play in the constantly changing natural world? Are the plants and animals that exist today, and we humans ourselves, inevitabilities or evolutionary flukes? And what does that say about life on other planets? Jonathan Losos reveals what the latest breakthroughs in evolutionary biology can tell us about one of the greatest ongoing debates in science. He takes us around the globe to meet the researchers who are solving the deepest mysteries of life on Earth through their work in experimental evolutionary science. Losos himself is one of the leaders in this exciting new field, and he illustrates how experiments with guppies, fruit flies, bacteria, foxes, and field mice, along with his own work with anole lizards on Caribbean islands, are rewinding the tape of life to reveal just how rapid and predictable evolution can be. Improbable Destinies will change the way we think and talk about evolution. Losos's insights into natural selection and evolutionary change have far-reaching applications for protecting ecosystems, securing our food supply, and fighting off harmful viruses and bacteria. This compelling narrative offers a new understanding of ourselves and our role in the natural world and the cosmos.
These original contributions on the evolution of primates and the techniques for studying the subject cover an enormous range of material and incorporate the work of specialists from many different fields, showing the necessity of a multidisciplinary approach to problems of primate morphology and phylogeny. Collectively, they demonstrate the concerns and methods of leading contemporary workers in this and related fields. Each contributor shows his way of attacking fundamental problems of evolutionary primatology.
This text aims to establish biology as a discipline not just a collection of facts. Life develops students' understanding of biological processes with scholarship, a smooth narrative, experimental contexts, art and effective pedagogy.
Are humans a galactic oddity, or will complex life with human abilities develop on planets with environments that remain habitable for long enough? In a clear, jargon-free style, two leading researchers in the burgeoning field of astrobiology critically examine the major evolutionary steps that led us from the distant origins of life to the technologically advanced species we are today. Are the key events that took life from simple cells to astronauts unique occurrences that would be unlikely to occur on other planets? By focusing on what life does - it's functional abilities - rather than specific biochemistry or anatomy, the authors provide plausible answers to this question. Systematically exploring the various pathways that led to the complex biosphere we experience on planet Earth, they show that most of the steps along that path are likely to occur on any world hosting life, with only two exceptions: One is the origin of life itself – if this is a highly improbable event, then we live in a rather “empty universe”. However, if this isn’t the case, we inevitably live in a universe containing a myriad of planets hosting complex as well as microbial life - a “cosmic zoo”. The other unknown is the rise of technologically advanced beings, as exemplified on Earth by humans. Only one technological species has emerged in the roughly 4 billion years life has existed on Earth, and we don’t know of any other technological species elsewhere. If technological intelligence is a rare, almost unique feature of Earth's history, then there can be no visitors to the cosmic zoo other than ourselves. Schulze-Makuch and Bains take the reader through the history of life on Earth, laying out a consistent and straightforward framework for understanding why we should think that advanced, complex life exists on planets other than Earth. They provide a unique perspective on the question that puzzled the human species for centuries: are we alone?