Download Free Applying Graph Theory In Ecological Research Book in PDF and EPUB Free Download. You can read online Applying Graph Theory In Ecological Research and write the review.

This book clearly describes the many applications of graph theory to ecological questions, providing instruction and encouragement to researchers.
Network thinking and network analysis are rapidly expanding features of ecological research. Network analysis of ecological systems include representations and modelling of the interactions in an ecosystem, in which species or factors are joined by pairwise connections. This book provides an overview of ecological network analysis including generating processes, the relationship between structure and dynamic function, and statistics and models for these networks. Starting with a general introduction to the composition of networks and their characteristics, it includes details on such topics as measures of network complexity, applications of spectral graph theory, how best to include indirect species interactions, and multilayer, multiplex and multilevel networks. Graduate students and researchers who want to develop and understand ecological networks in their research will find this volume inspiring and helpful. Detailed guidance to those already working in network ecology but looking for advice is also included.
A comprehensive account of joint species distribution modelling, covering statistical analyses in light of modern community ecology theory.
Explores modern topics in graph theory and its applications to problems in transportation, genetics, pollution, perturbed ecosystems, urban services, and social inequalities. The author presents both traditional and relatively atypical graph-theoretical topics to best illustrate applications.
A review and evaluation of the analysis methods for studying spatial pattern in vegetation.
This research monograph provides the means to learn the theory and practice of graph and network analysis using the Python programming language. The social network analysis techniques, included, will help readers to efficiently analyze social data from Twitter, Facebook, LiveJournal, GitHub and many others at three levels of depth: ego, group, and community. They will be able to analyse militant and revolutionary networks and candidate networks during elections. For instance, they will learn how the Ebola virus spread through communities. Practically, the book is suitable for courses on social network analysis in all disciplines that use social methodology. In the study of social networks, social network analysis makes an interesting interdisciplinary research area, where computer scientists and sociologists bring their competence to a level that will enable them to meet the challenges of this fast-developing field. Computer scientists have the knowledge to parse and process data while sociologists have the experience that is required for efficient data editing and interpretation. Social network analysis has successfully been applied in different fields such as health, cyber security, business, animal social networks, information retrieval, and communications.
An overview of the wide range of spatial statistics available to analyse ecological data.
Graph theory can be applied to ecological questions in many ways, and more insights can be gained by expanding the range of graph theoretical concepts applied to a specific system. But how do you know which methods might be used? And what do you do with the graph once it has been obtained? This book provides a broad introduction to the application of graph theory in different ecological systems, providing practical guidance for researchers in ecology and related fields. Readers are guided through the creation of an appropriate graph for the system being studied, including the application of spatial, spatio-temporal, and more abstract structural process graphs. Simple figures accompany the explanations to add clarity, and a broad range of ecological phenomena from many ecological systems are covered. This is the ideal book for graduate students and researchers looking to apply graph theoretical methods in their work.
This book provides a timely overview of fuzzy graph theory, laying the foundation for future applications in a broad range of areas. It introduces readers to fundamental theories, such as Craine’s work on fuzzy interval graphs, fuzzy analogs of Marczewski’s theorem, and the Gilmore and Hoffman characterization. It also introduces them to the Fulkerson and Gross characterization and Menger’s theorem, the applications of which will be discussed in a forthcoming book by the same authors. This book also discusses in detail important concepts such as connectivity, distance and saturation in fuzzy graphs. Thanks to the good balance between the basics of fuzzy graph theory and new findings obtained by the authors, the book offers an excellent reference guide for advanced undergraduate and graduate students in mathematics, engineering and computer science, and an inspiring read for all researchers interested in new developments in fuzzy logic and applied mathematics.
This textbook provides the first overview of plant-animal interactions for twenty years focused on the needs of students and professors. It discusses a range of topics from the basic structures of plant-animal interactions to their evolutionary implications in producing and maintaining biodiversity. It also highlights innovative aspects of plant-animal interactions that can represent highly productive research avenues, making it a valuable resource for anyone interested in a future career in ecology. Written by leading experts, and employing a variety of didactic tools, the book is useful for students and teachers involved in advanced undergraduate and graduate courses addressing areas such as herbivory, trophic relationships, plant defense, pollination and biodiversity.