Download Free Applying An Implementation Science Approach To Genomic Medicine Book in PDF and EPUB Free Download. You can read online Applying An Implementation Science Approach To Genomic Medicine and write the review.

Although it is becoming increasingly more common for clinicians to use genomic data in their practices for disease prevention, diagnosis, and treatment, the process of integrating genomic data into the practice of medicine has been a slow and challenging one. Some of the major barriers impeding the incorporation of new genomic technology into clinical practice are: the difficulty of changing routine medical practices to account for the use of genetic testing, the limited knowledge of patients and providers about genomic medicine, assessing sufficient evidence to support the use of genetic tests, privacy and data security issues, and uncertainty about reimbursement. The field of implementation science may be able to provide insights concerning efficient ways to incorporate genomic applications into routine clinical practice. The focus of implementation science studies is to identify integration bottlenecks and optimal approaches for a given setting and ultimately to promote the up-take of research findings. To explore the potential of implementation science to improve the integration of genomics into medicine, the National Academies of Sciences, Engineering, and Medicine held a workshop in Washington, DC, in November 2015. Participants explored the challenges and opportunities of integrating genomic advances into the clinic through the lens of implementation science. This report summarizes the presentations and discussions from the workshop.
Although it is becoming increasingly more common for clinicians to use genomic data in their practices for disease prevention, diagnosis, and treatment, the process of integrating genomic data into the practice of medicine has been a slow and challenging one. Some of the major barriers impeding the incorporation of new genomic technology into clinical practice are: the difficulty of changing routine medical practices to account for the use of genetic testing, the limited knowledge of patients and providers about genomic medicine, assessing sufficient evidence to support the use of genetic tests, privacy and data security issues, and uncertainty about reimbursement. The field of implementation science may be able to provide insights concerning efficient ways to incorporate genomic applications into routine clinical practice. The focus of implementation science studies is to identify integration bottlenecks and optimal approaches for a given setting and ultimately to promote the up-take of research findings. To explore the potential of implementation science to improve the integration of genomics into medicine, the National Academies of Sciences, Engineering, and Medicine held a workshop in Washington, DC, in November 2015. Participants explored the challenges and opportunities of integrating genomic advances into the clinic through the lens of implementation science. This report summarizes the presentations and discussions from the workshop.
With the advent of genome-wide association studies, numerous associations between specific gene loci and complex diseases have been identified-for breast cancer, coronary artery disease, and asthma, for example. This rapidly advancing field of genomics has stirred great interest in "personalized" health care from both the public and private sectors. The hope is that using genomic information in clinical care will lead to reduced health care costs and improved health outcomes as therapies are tailored to the genetic susceptibilities of patients. A variety of genetically based health care innovations have already reached the marketplace, but information about the clinical use of these treatments and diagnostics is limited. Currently data do not provide information about how a genomic test impacts clinical care and patient health outcomes-other approaches are needed to garner such information. This volume summarizes a workshop to address central questions related to the development of systems to evaluate clinical use of health care innovations that stem from genome-based research: What are the practical realities of creating such systems? What different models could be used? What are the strengths and weaknesses of each model? How effectively can such systems address questions about health outcomes?
Genomic and Precision Medicine: Oncology, Third Edition focuses on the applications of genome discovery as research points to personalized cancer therapies. Each chapter is organized to cover the application of genomics and personalized medicine tools and technologies to a) Risk Assessment and Susceptibility, b) Diagnosis and Prognosis, c) Pharmacogenomics and Precision Therapeutics, and d) Emerging and Future Opportunities in the field. - Provides a comprehensive volume written and edited by oncology genomic specialists for oncology health providers - Includes succinct commentary and key learning points that will assist providers with their local needs for implementation of genomic and personalized medicine into practice - Presents an up-to-date overview on major opportunities for genomic and personalized medicine in practice - Covers case studies that highlight the practical use of genomics in the management of patients
Interest in implementation research is growing, largely in recognition of the contribution it can make to maximizing the beneficial impact of health interventions. As a relatively new and, until recently, rather neglected field within the health sector, implementation research is something of an unknown quantity for many. There is therefore a need for greater clarity about what exactly implementation research is, and what it can offer. This Guide is designed to provide that clarity. Intended to support those conducting implementation research, those with responsibility for implementing programs, and those who have an interest in both, the Guide provides an introduction to basic implementation research concepts and language, briefly outlines what it involves, and describes the many opportunities that it presents. The main aim of the Guide is to boost implementation research capacity as well as demand for implementation research that is aligned with need, and that is of particular relevance to health systems in low- and middle-income countries (LMICs). Research on implementation requires the engagement of diverse stakeholders and multiple disciplines in order to address the complex implementation challenges they face. For this reason, the Guide is intended for a variety of actors who contribute to and/or are impacted by implementation research. This includes the decision-makers responsible for designing policies and managing programs whose decisions shape implementation and scale-up processes, as well as the practitioners and front-line workers who ultimately implement these decisions along with researchers from different disciplines who bring expertise in systematically collecting and analyzing information to inform implementation questions. The opening chapters (1-4) make the case for why implementation research is important to decision-making. They offer a workable definition of implementation research and illustrate the relevance of research to problems that are often considered to be simply administrative and provide examples of how such problems can be framed as implementation research questions. The early chapters also deal with the conduct of implementation research, emphasizing the importance of collaboration and discussing the role of implementers in the planning and designing of studies, the collection and analysis of data, as well as in the dissemination and use of results. The second half of the Guide (5-7) detail the various methods and study designs that can be used to carry out implementation research, and, using examples, illustrates the application of quantitative, qualitative, and mixed-method designs to answer complex questions related to implementation and scale-up. It offers guidance on conceptualizing an implementation research study from the identification of the problem, development of research questions, identification of implementation outcomes and variables, as well as the selection of the study design and methods while also addressing important questions of rigor.
Precision Public Health is a new and rapidly evolving field, that examines the application of new technologies to public health policy and practice. It draws on a broad range of disciplines including genomics, spatial data, data linkage, epidemiology, health informatics, big data, predictive analytics and communications. The hope is that these new technologies will strengthen preventive health, improve access to health care, and reach disadvantaged populations in all areas of the world. But what are the downsides and what are the risks, and how can we ensure the benefits flow to those population groups most in need, rather than simply to those individuals who can afford to pay? This is the first collection of theoretical frameworks, analyses of empirical data, and case studies to be assembled on this topic, published to stimulate debate and promote collaborative work.
While many effective interventions have been developed with the potential to significantly reduce morbidity and mortality from cancer, they are of no benefit to the health of populations if they cannot be delivered. In response to this challenge, Advancing the Science of Implementation across the Cancer Continuum provides an overview of research that can improve the delivery of evidence-based interventions in cancer prevention, early detection, treatment, and survivorship. Chapters explore the field of implementation science and its application to practice, a broad synthesis of relevant research and case studies illustrating each cancer-focused topic area, and emerging issues at the intersection of research and practice in cancer. Both comprehensive and accessible, this book is an ideal resource for researchers, clinical and public health practitioners, medical and public health students, and health policymakers.
Genomic applications are being integrated into a broad range of clinical and research activities at health care systems across the United States. This trend can be attributed to a variety of factors, including the declining cost of genome sequencing and the potential for improving health outcomes and cutting the costs of care. The goals of these genomics-based programs may be to identify individuals with clinically actionable variants as a way of preventing disease, providing diagnoses for patients with rare diseases, and advancing research on genetic contributions to health and disease. Of particular interest are genomics- based screening programs, which will, in this publication, be clinical screening programs that examine genes or variants in unselected populations in order to identify individuals who are at an increased risk for a particular health concern (e.g., diseases, adverse drug outcomes) and who might benefit from clinical interventions. On November 1, 2017, the National Academies of Sciences, Engineering, and Medicine hosted a public workshop to explore the challenges and opportunities associated with integrating genomics-based screening programs into health care systems. This workshop was developed as a way to explore the challenges and opportunities associated with integrating genomics-based programs in health care systems in the areas of evidence collection, sustainability, data sharing, infrastructure, and equity of access. This publication summarizes the presentations and discussions from the workshop.
Medical and Health Genomics provides concise and evidence-based technical and practical information on the applied and translational aspects of genome sciences and the technologies related to non-clinical medicine and public health. Coverage is based on evolving paradigms of genomic medicine—in particular, the relation to public and population health genomics now being rapidly incorporated in health management and administration, with further implications for clinical population and disease management. - Provides extensive coverage of the emergent field of health genomics and its huge relevance to healthcare management - Presents user-friendly language accompanied by explanatory diagrams, figures, and many references for further study - Covers the applied, but non-clinical, sciences across disease discovery, genetic analysis, genetic screening, and prevention and management - Details the impact of clinical genomics across a diverse array of public and community health issues, and within a variety of global healthcare systems
In 2006 the National Institutes of Health (NIH) established the Clinical and Translational Science Awards (CTSA) Program, recognizing the need for a new impetus to encourage clinical and translational research. At the time it was very difficult to translate basic and clinical research into clinical and community practice; making it difficult for individual patients and communities to receive its benefits. Since its creation the CTSA Program has expanded, with 61 sites spread across the nation's academic health centers and other institutions, hoping to provide catalysts and test beds for policies and practices that can benefit clinical and translation research organizations throughout the country. The NIH contracted with the Institute of Medicine (IOM) in 2012 to conduct a study to assess and provide recommendations on appropriateness of the CTSA Program's mission and strategic goals and whether changes were needed. The study was also address the implementation of the program by the National Center for Advancing Translational Sciences (NCATS) while exploring the CTSA's contributions in the acceleration of the development of new therapeutics. A 13-member committee was established to head this task; the committee had collective expertise in community outreach and engagement, public health and health policy, bioethics, education and training, pharmaceutical research and development, program evaluation, clinical and biomedical research, and child health research. The CTSA Program at NIH: Opportunities for Advancing Clinical and Translational Research is the result of investigations into previous program evaluations and assessments, open-session meetings and conference class, and the review of scientific literature. Overall, the committee believes that the CTSA Program is significant to the advancement of clinical and translational research through its contributions. The Program would benefit from a variety of revisions, however, to make it more efficient and effective.