Download Free Applied Statics And Strength Of Materials Book in PDF and EPUB Free Download. You can read online Applied Statics And Strength Of Materials and write the review.

"The seventh edition of Applied Statics and Strength of Materials presents an elementary, analytical, and practical approach to the principles and physical concepts of statics and strength of materials. It is written at an appropriate mathematics level for engineering technology students, using algebra, trigonometry, and analytic geometry. An in-depth knowledge of calculus is not required for understanding the text or solving the problems"--
Unique in perspective, approach, and coverage, this book is written specifically to introduce architectural, construction and civil engineering technicians to elementary engineering concepts, design principles, and practices. Using a practical, non-classical, non-calculus approach, it combines -- in one volume -- full coverage of the statics, strengths of materials, and building structure analysis/design concepts that technicians must master for the demands of today's changing workplace. Provides nearly 180 examples and over 200 supporting illustrations and photographs, including photos of buildings under construction and in sequence. Contains a very comprehensive set of tables of structural products and their properties. For anyone studying or interested in architectural technology, architectural engineering technology, structural technology, structural engineering technology, civil engineering technology, construction engineering technology, or construction management.
Designed for a first course in strength of materials, Applied Strength of Materials has long been the bestseller for Engineering Technology programs because of its comprehensive coverage, and its emphasis on sound fundamentals, applications, and problem-solving techniques. The combination of clear and consistent problem-solving techniques, numerous end-of-chapter problems, and the integration of both analysis and design approaches to strength of materials principles prepares students for subsequent courses and professional practice. The fully updated Sixth Edition. Built around an educational philosophy that stresses active learning, consistent reinforcement of key concepts, and a strong visual component, Applied Strength of Materials, Sixth Edition continues to offer the readers the most thorough and understandable approach to mechanics of materials.
For one/two-semester, undergraduate-level courses in Statics and Strength of Materials, Engineering Mechanics, and Strength of Materials. Focusing on mastery of the basics, this book presents a non-Calculus based elementary, analytical, and practical approach to the principles and physical concepts of Statics and Strength of Materials. It features a rigorous, comprehensive step-by-step problem solving approach; an abundance of worked-out example problems and homework problems; and a focus on principles and applications applicable to many fields of engineering technology e.g., civil, mechanical, construction, architectural, industrial, and manufacturing.
This systematic exploration of real-world stress analysis has been completely updated to reflect state-of-the-art methods and applications now used in aeronautical, civil, and mechanical engineering, and engineering mechanics. Distinguished by its exceptional visual interpretations of solutions, Advanced Mechanics of Materials and Applied Elasticity offers in-depth coverage for both students and engineers. The authors carefully balance comprehensive treatments of solid mechanics, elasticity, and computer-oriented numerical methods—preparing readers for both advanced study and professional practice in design and analysis. This major revision contains many new, fully reworked, illustrative examples and an updated problem set—including many problems taken directly from modern practice. It offers extensive content improvements throughout, beginning with an all-new introductory chapter on the fundamentals of materials mechanics and elasticity. Readers will find new and updated coverage of plastic behavior, three-dimensional Mohr’s circles, energy and variational methods, materials, beams, failure criteria, fracture mechanics, compound cylinders, shrink fits, buckling of stepped columns, common shell types, and many other topics. The authors present significantly expanded and updated coverage of stress concentration factors and contact stress developments. Finally, they fully introduce computer-oriented approaches in a comprehensive new chapter on the finite element method.
STATICS AND STRENGTH OF MATERIALS, 7/e is fully updated text and presents logically organized, clear coverage of all major topics in statics and strength of materials, including the latest developments in materials technology and manufacturing/construction techniques. A basic knowledge of algebra and trigonometry are the only mathematical skills it requires, although several optional sections using calculus are provided for instructors teaching in ABET accredited programs. A new introductory section on catastrophic failures shows students why these topics are so important, and 25 full-page, real-life application sidebars demonstrate the relevance of theory. To simplify understanding and promote student interest, the book is profusely illustrated.
This book outlines the basic science underlying the prediction of stress and velocity distributions in granular materials. The nature of a rigid-plastic material is discussed and a comparison is made between the Coulomb and conical (extended Von Mises) models. The methods of measuring material properties are described and an interpretation of the experimental results is considered in the context of the Critical State Theory. Exercises and solutions are provided that will be particularly useful for the reader.
This practical introduction includes all of the coverage of strength topics contained in this larger text. It's a step-by-step presentation that is so well suited to undergraduate engineering technology students. Coverage includes: belt friction, stress concentrations, Mohr's circle of stress, moment-area theorems, centroids by integration, and more.
Textbook for Machine Members-Strength 10606135.
The text is written at a fundamental level for students of engineering and construction technology programs. Equilibrium, trusses, frames, centroids and moment of inertia and their relation to the concepts of vectors and equilibrium are covered in detail