Download Free Applied Soft Computing Techniques For Renewable Energy Book in PDF and EPUB Free Download. You can read online Applied Soft Computing Techniques For Renewable Energy and write the review.

Examines the integration of hardware with stand-alone PV panels and real time monitoring of factors affecting the efficiency of the photovoltaic panels Offers the real time implementation of soft computing and embedded system in the area of solar energy Discusses how soft computing plays a huge role in the prediction of efficiency of stand-alone and grid connected solar PV systems Discusses how embedded system applications with smart monitoring can control and enhance the efficiency of stand-alone and grid connected solar PV systems Explores swarm intelligence techniques for solar PV parameter estimation
Soft Computing in Green and Renewable Energy Systems provides a practical introduction to the application of soft computing techniques and hybrid intelligent systems for designing, modeling, characterizing, optimizing, forecasting, and performance prediction of green and renewable energy systems. Research is proceeding at jet speed on renewable energy (energy derived from natural resources such as sunlight, wind, tides, rain, geothermal heat, biomass, hydrogen, etc.) as policy makers, researchers, economists, and world agencies have joined forces in finding alternative sustainable energy solutions to current critical environmental, economic, and social issues. The innovative models, environmentally benign processes, data analytics, etc. employed in renewable energy systems are computationally-intensive, non-linear and complex as well as involve a high degree of uncertainty. Soft computing technologies, such as fuzzy sets and systems, neural science and systems, evolutionary algorithms and genetic programming, and machine learning, are ideal in handling the noise, imprecision, and uncertainty in the data, and yet achieve robust, low-cost solutions. As a result, intelligent and soft computing paradigms are finding increasing applications in the study of renewable energy systems. Researchers, practitioners, undergraduate and graduate students engaged in the study of renewable energy systems will find this book very useful.
As the climate and environment continue to fluctuate, researchers are urgently looking for new ways to preserve our limited resources and prevent further environmental degradation. The answer can be found through computer science, a field that is evolving at precisely the time it is needed most. Soft Computing Applications for Renewable Energy and Energy Efficiency brings together the latest technological research in computational intelligence and fuzzy logic as a way to care for our environment. This reference work highlights current advances and future trends in environmental sustainability using the principles of soft computing, making it an essential resource for students, researchers, engineers, and practitioners in the fields of project engineering and energy science.
The rise in population and the concurrently growing consumption rate necessitates the evolution of agriculture to adopt current computational technologies to increase production at a faster and smoother scale. While existing technologies may help in crop processing, there is a need for studies that seek to understand how modern approaches like artificial intelligence, fuzzy logic, and hybrid algorithms can aid the agricultural process while utilizing energy sources efficiently. The Handbook of Research on Smart Computing for Renewable Energy and Agro-Engineering is an essential publication that examines the benefits and barriers of implementing computational models to agricultural production and energy sources as well as how these models can produce more cost-effective and sustainable solutions. Featuring coverage on a wide range of topics such as bacterial foraging, swarm intelligence, and combinatorial optimization, this book is ideally designed for agricultural engineers, farmers, municipal union leaders, computer scientists, information technologists, sustainable developers, managers, environmentalists, industry professionals, academicians, researchers, and students.
Computer Vision and Machine Intelligence for Renewable Energy Systems offers a practical, systemic guide to the use of computer vision as an innovative tool to support renewable energy integration.This book equips readers with a variety of essential tools and applications: Part I outlines the fundamentals of computer vision and its unique benefits in renewable energy system models compared to traditional machine intelligence: minimal computing power needs, speed, and accuracy even with partial data. Part II breaks down specific techniques, including those for predictive modeling, performance prediction, market models, and mitigation measures. Part III offers case studies and applications to a wide range of renewable energy sources, and finally the future possibilities of the technology are considered. The very first book in Elsevier's cutting-edge new series Advances in Intelligent Energy Systems, Computer Vision and Machine Intelligence for Renewable Energy Systems provides engineers and renewable energy researchers with a holistic, clear introduction to this promising strategy for control and reliability in renewable energy grids. - Provides a sorely needed primer on the opportunities of computer vision techniques for renewable energy systems - Builds knowledge and tools in a systematic manner, from fundamentals to advanced applications - Includes dedicated chapters with case studies and applications for each sustainable energy source
Design, Analysis and Applications of Renewable Energy Systems covers recent advancements in the study of renewable energy control systems by bringing together diverse scientific breakthroughs on the modeling, control and optimization of renewable energy systems as conveyed by leading energy systems engineering researchers. The book focuses on present novel solutions for many problems in the field, covering modeling, control theorems and the optimization techniques that will help solve many scientific issues for researchers. Multidisciplinary applications are also discussed, along with their fundamentals, modeling, analysis, design, realization and experimental results. This book fills the gaps between different interdisciplinary applications, ranging from mathematical concepts, modeling, and analysis, up to the realization and experimental work. - Presents some of the latest innovative approaches to renewable energy systems from the point-of-view of dynamic modeling, system analysis, optimization, control and circuit design - Focuses on advances related to optimization techniques for renewable energy and forecasting using machine learning methods - Includes new circuits and systems, helping researchers solve many nonlinear problems
Intelligent Learning Approaches for Renewable and Sustainable Energy provides a practical, systematic overview of the application of advanced intelligent control techniques, adaptive techniques, machine learning algorithms, and predictive control in renewable and sustainable energy.The book begins by introducing the intelligent learning approaches, and the roles of artificial intelligence and machine learning in terms of energy and sustainability, grid transformation, large-scale integration of renewable energy, and variability and flexibility of renewable sources. The second section of the book provides detailed coverage of intelligent learning techniques as applied to key areas of renewable and sustainable energy, including forecasting, supply and demand, integration, energy management, and optimization, supported by case studies, figures, schematics, and references.This is a useful resource for researchers, scientists, advanced students, energy engineers, R&D professionals, and other industrial personnel with an interest in sustainable energy and integration of renewable energy sources, energy systems, energy engineering, machine learning, and artificial intelligence. - Explores cutting-edge intelligent techniques and their implications for future energy systems development - Opens the door to a range of applications across forecasting, supply and demand, energy management, optimization, and more - Includes a range of case studies that provide insights into the challenges and solutions in real-world applications
Optimization Techniques for Hybrid Power Systems: Renewable Energy, Electric Vehicles, and Smart Grid is a comprehensive guide that delves into the intricate world of renewable energy integration and its impact on electrical systems. With the current global energy crisis and the urgent need to address climate change, this book explores the latest advancements and research surrounding optimization techniques in the realm of renewable energy. This book has a focus on nature-inspired and meta-heuristic optimization methods, and it demonstrates how these techniques have revolutionized renewable energy problem-solving and their application in real-world scenarios. It examines the challenges and opportunities in achieving a larger utilization of renewable energy sources to reduce carbon emissions and air pollutants while meeting renewable portfolio standards and enhancing energy efficiency. This book serves as a valuable resource for researchers, academicians, industry delegates, scientists, and final-year master's degree students. It covers a wide range of topics, including novel power generation technology, advanced energy conversion systems, low-carbon technology in power generation and smart grids, AI-based control strategies, data analytics, electrified transportation infrastructure, and grid-interactive building infrastructure.
Renewable energy is crucial to preserve the environment. This energy involves various systems that must be optimized and assessed to provide better performance; however, the design and development of renewable energy systems remains a challenge. It is crucial to implement the latest innovative research in the field in order to develop and improve renewable energy systems. Applications of Nature-Inspired Computing in Renewable Energy Systems discusses the latest research on nature-inspired computing approaches applied to the design and development of renewable energy systems and provides new solutions to the renewable energy domain. Covering topics such as microgrids, wind power, and artificial neural networks, it is ideal for engineers, industry professionals, researchers, academicians, practitioners, teachers, and students.