Download Free Applied Optics And Optical Design Part Two Book in PDF and EPUB Free Download. You can read online Applied Optics And Optical Design Part Two and write the review.

Classic detailed treatment for practical designer. Fundamental concepts, systematic study and design of all types of optical systems. Reader can then design simpler optical systems without aid. Part Two of Two.
Classic detailed treatment for practical designer. Fundamental concepts, systematic study and design of all types of optical systems. Reader can then design simpler optical systems without aid. Part One of Two.
Classic work presents Conrady's complete system of optical design. Part One covers all ordinary ray-tracing methods, together with the complete theory of primary aberration and as much of higher aberration as is needed for the design of telescopes, low-power microscopes, and simple optical systems.
Handbook of Optical Design, Third Edition covers the fundamental principles of geometric optics and their application to lens design in one volume. It incorporates classic aspects of lens design along with important modern methods, tools, and instruments, including contemporary astronomical telescopes, Gaussian beams, and computer lens design. Written by respected researchers, the book has been extensively classroom-tested and developed in their lens design courses. This well-illustrated handbook clearly and concisely explains the intricacies of optical system design and evaluation. It also discusses component selection, optimization, and integration for the development of effective optical apparatus. The authors analyze the performance of a wide range of optical materials, components, and systems, from simple magnifiers to complex lenses used in photography, ophthalmology, telescopes, microscopes, and projection systems. Throughout, the book includes a wealth of design examples, illustrations, and equations, most of which are derived from basic principles. Appendices supply additional background information. What’s New in This Edition Improved figures, including 32 now in color Updates throughout, reflecting advances in the field New material on Buchdahl high-order aberrations Expanded and improved coverage of the calculation of wavefront aberrations based on optical path An updated list of optical materials in the appendix A clearer, more detailed description of primary aberrations References to important new publications Optical system design examples updated to include newly available glasses 25 new design examples This comprehensive book combines basic theory and practical details for the design of optical systems. It is an invaluable reference for optical students as well as scientists and engineers working with optical instrumentation.
Since the incorporation of scientific approach in tackling problems of optical instrumentation, analysis and design of optical systems constitute a core area of optical engineering. A large number of software with varying level of scope and applicability is currently available to facilitate the task. However, possession of an optical design software, per se, is no guarantee for arriving at correct or optimal solutions. The validity and/or optimality of the solutions depend to a large extent on proper formulation of the problem, which calls for correct application of principles and theories of optical engineering. On a different note, development of proper experimental setups for investigations in the burgeoning field of optics and photonics calls for a good understanding of these principles and theories. With this backdrop in view, this book presents a holistic treatment of topics like paraxial analysis, aberration theory, Hamiltonian optics, ray-optical and wave-optical theories of image formation, Fourier optics, structural design, lens design optimization, global optimization etc. Proper stress is given on exposition of the foundations. The proposed book is designed to provide adequate material for ‘self-learning’ the subject. For practitioners in related fields, this book is a handy reference. Foundations of Optical System Analysis and Synthesis provides A holistic approach to lens system analysis and design with stress on foundations Basic knowledge of ray and wave optics for tackling problems of instrumental optics Proper explanation of approximations made at different stages Sufficient illustrations for facilitation of understanding Techniques for reducing the role of heuristics and empiricism in optical/lens design A sourcebook on chronological development of related topics across the globe This book is composed as a reference book for graduate students, researchers, faculty, scientists and technologists in R & D centres and industry, in pursuance of their understanding of related topics and concepts during problem solving in the broad areas of optical, electro-optical and photonic system analysis and design.
This work covers spatial frequency, spread function, wave aberration, and transfer function - and how these concepts are related in an optical system, how they are measured and calculated, and how they may be useful.
- Thoroughly revised and expanded to reflect the substantial changes in the field since its publication in 1978 - Strong emphasis on how to effectively use software design packages, indispensable to today's lens designer - Many new lens design problems and examples – ranging from simple lenses to complex zoom lenses and mirror systems – give insight for both the newcomer and specialist in the field Rudolf Kingslake is regarded as the American father of lens design; his book, not revised since its publication in 1978, is viewed as a classic in the field. Naturally, the area has developed considerably since the book was published, the most obvious changes being the availability of powerful lens design software packages, theoretical advances, and new surface fabrication technologies. This book provides the skills and knowledge to move into the exciting world of contemporary lens design and develop practical lenses needed for the great variety of 21st-century applications. Continuing to focus on fundamental methods and procedures of lens design, this revision by R. Barry Johnson of a classic modernizes symbology and nomenclature, improves conceptual clarity, broadens the study of aberrations, enhances discussion of multi-mirror systems, adds tilted and decentered systems with eccentric pupils, explores use of aberrations in the optimization process, enlarges field flattener concepts, expands discussion of image analysis, includes many new exemplary examples to illustrate concepts, and much more. Optical engineers working in lens design will find this book an invaluable guide to lens design in traditional and emerging areas of application; it is also suited to advanced undergraduate or graduate course in lens design principles and as a self-learning tutorial and reference for the practitioner. Rudolf Kingslake (1903-2003) was a founding faculty member of the Institute of Optics at The University of Rochester (1929) and remained teaching until 1983. Concurrently, in 1937 he became head of the lens design department at Eastman Kodak until his retirement in 1969. Dr. Kingslake published numerous papers, books, and was awarded many patents. He was a Fellow of SPIE and OSA, and an OSA President (1947-48). He was awarded the Progress Medal from SMPTE (1978), the Frederic Ives Medal (1973), and the Gold Medal of SPIE (1980). R. Barry Johnson has been involved for over 40 years in lens design, optical systems design, and electro-optical systems engineering. He has been a faculty member at three academic institutions engaged in optics education and research, co-founder of the Center for Applied Optics at the University of Alabama in Huntsville, employed by a number of companies, and provided consulting services. Dr. Johnson is an SPIE Fellow and Life Member, OSA Fellow, and an SPIE President (1987). He published numerous papers and has been awarded many patents. Dr. Johnson was founder and Chairman of the SPIE Lens Design Working Group (1988-2002), is an active Program Committee member of the International Optical Design Conference, and perennial co-chair of the annual SPIE Current Developments in Lens Design and Optical Engineering Conference. - Thoroughly revised and expanded to reflect the substantial changes in the field since its publication in 1978 - Strong emphasis on how to effectively use software design packages, indispensable to today's lens designer - Many new lens design problems and examples – ranging from simple lenses to complex zoom lenses and mirror systems – give insight for both the newcomer and specialist in the field
"Aden B. Meinel and wife Marjorie P. Meinel stood at the confluence of several overarching technological developments of the 20th century: postwar aerial surveillance by spy planes and satellites, solar energy, the evolution of telescope design, interdisciplinary optics, and photonics. In 1945 he was a Navy Ensign ordered to find the secret tunnels in Nazi Germany where the V-2 rockets menacing Great Britain and Belgium were being manufactured. After receiving both his B.A. degree and Ph.D. in astronomy from the University of California at Berkeley within three years, Aden was invited to join the scientific staff at Yerkes Observatory/University of Chicago. While there he was selected by the National Science Foundation to manage the development of a new national observatory on Kitt Peak, Arizona, and served as its first Director. In the early 1960s he founded the Optical Sciences Center at the University of Arizona, which later metamorphosed into the College of Optical Sciences with the doctoral program in interdisciplinary optics. It was here that he also designed the first Multiple Mirror Telescope and with wife Marjorie pioneered the feasibility of solar energy power on a commercial scale. Aden's knowledge and expertise in optics made him invaluable in research on cameras for spy satellites and spy planes overflying the Soviet Union and Southeast Asia. After retirement the Meinels worked for NASA/JPL on the precursor of the James Webb Space Telescope and on the exoplanet program. They also served on the team that corrected spherical aberration in the Hubble Space Telescope"--