Download Free Applied Nonlinear Optics Book in PDF and EPUB Free Download. You can read online Applied Nonlinear Optics and write the review.

Directed toward physicists and engineers interested in the device applications enabled by nonlinear optics, this text is suitable for advanced undergraduates and graduate students. Its content is presented entirely on a classical basis and requires only an elementary knowledge of quantum mechanics. The authors demonstrate how real laboratory situations can diverge from ideal theory, acquainting readers with the kinds of problems common to construction of a nonlinear device. They also offer a detailed discussion of the practical problems and characteristics of nonlinear materials, as well as the selection procedures necessary to ensure the use of good material. Their treatment begins with an introduction to the theories of linear and nonlinear optics, along with the basic ideas behind them. Succeeding chapters explore phase matching and nonlinear materials, followed by detailed treatments of second-harmonic generation, parametric up-conversion, and optical parametric amplification and oscillation. Appendixes offer a comprehensive list of materials and their properties; the text concludes with references and an index.
This book is based on a course of lectures for advanced students. Part 1 is devoted to an introductory treatment of general concepts and methods to be used for describing nonlinear processes. Part 2 is concerned with the application of these concepts and methods to significant effects and processes, covering also the particular experimental arrangements, measuring methods, and empirical data connected with them.
Fundamentals of Nonlinear Optics encompasses a broad spectrum of nonlinear phenomena from second-harmonic generation to soliton formation. The wide use of nonlinear optical phenomena in laboratories and commercial devices requires familiarity with the underlying physics as well as practical device considerations. This text adopts a combined approach to analyze the complimentary aspects of nonlinear optics, enabling a fundamental understanding of both a given effect and practical device applications. After a review chapter on linear phenomena important to nonlinear optics, the book tackles nonlinear phenomena with a look at the technologically important processes of second-harmonic generation, sum-frequency and difference-frequency generation, and the electro-optic effect. The author covers these processes in considerable detail at both theoretical and practical levels as the formalisms developed for these effects carry to subsequent topics, such as four-wave mixing, self-phase modulation, Raman scattering, Brillouin scattering, and soliton formation. Consistently connecting theory, process, effects, and applications, this introductory text encourages students to master key concepts and to solve nonlinear optics problems—preparing them for more advanced study. Along with extensive problems at the end of each chapter, it presents general algorithms accessible to any scientific graphical and programming package. Watch the author speak about the book.
Nonlinear Optics probes in great depth quadratic and cubic nonlinearities, photorefractive nonlinear optics, the nonlinear optical properties of nematic liquid crystals, and photonic bandgap structures. This reference places core physical principles and theoretical concepts in dialogue with contemporary applications and research and presents the essential physics behind the products and promise of this very fertile field. It presents new developments in the dispersion management in nonlinear optical fibers and the combined effects of quadratic and cubic nonlinearities on harmonic generation. Coverage includes a review of linear wave propagation and the origins of optical nonlinearity.
The Optical Society of America (OSA) and SPIE – The International Society for Optical Engineering have awarded Robert Boyd with an honorable mention for the Joseph W. Goodman Book Writing Award for his work on Nonlinear Optics, 2nd edition.Nonlinear optics is essentially the study of the interaction of strong laser light with matter. It lies at the basis of the field of photonics, the use of light fields to control other light fields and to perform logical operations. Some of the topics of this book include the fundamentals and applications of optical systems based on the nonlinear interaction of light with matter. Topics to be treated include: mechanisms of optical nonlinearity, second-harmonic and sum- and difference-frequency generation, photonics and optical logic, optical self-action effects including self-focusing and optical soliton formation, optical phase conjugation, stimulated Brillouin and stimulated Raman scattering, and selection criteria of nonlinear optical materials.· Covers all the latest topics and technology in this ever-evolving area of study that forms the backbone of the major applications of optical technology· Offers first-rate instructive style making it ideal for self-study· Emphasizes the fundamentals of non-linear optics rather than focus on particular applications that are constantly changing
This book describes the fundamental aspects of nonlinear optics from basic principles to applications. Starting from the polarization induced by an electric field in a material, it relates the induced polarization to the propagating fields. It describes the properties of the induced polarization through a material response expressed both in the time and frequency domains leading to the nonlinear wave equation. The second part of the book focuses on applications of nonlinear interaction between light and matter, and considers nonlinearities in crystals and optical fibers.
There has recently been a rapid growth of activity in nonlinear optics. Effects such as frequency doubling, stimulated Raman scattering, phase conjugation and solitons are of great interest both for their fundamental properties and their many important applications in science and engineering. It is mainly these applications - especially in telecommunications and information processing - that have stimulated the recent surge of activity. This book is a self contained account of the most important principles of nonlinear optics. Assuming only a familiarity with basic mathematics, the fundamentals of nonlinear optics are fully developed from basic concepts. The essential quantum mechanical apparatus is introduced and explained. In later chapters the underlying ideas are illustrated by discussing particular experimental configurations and materials. This book will be an invaluable introduction to the field for beginning graduates in physics or engineering, and will provide an excellent overview and reference work for active researchers in the field.
Clear, integrated coverage of all aspects of nonlinear optics—phenomena, materials, and devices Coauthored by George Stegeman, one of the most highly respected pioneers of nonlinear optics—with contributions on applications from Robert Stegeman—this book covers nonlinear optics from a combined physics, optics, materials science, and devices perspective. It offers a thoroughly balanced treatment of concepts, nonlinear materials, practical aspects of nonlinear devices, and current application areas. Beginning with the presentation of a simple electron on a spring model—to help readers make the leap from concepts to applications—Nonlinear Optics gives comprehensive explanations of second-order phenomena, derivation of nonlinear susceptibilities, third-order nonlinear effects, multi-wave mixing, scattering, and more. Coverage includes: Nonlinear response of materials at the molecular level Second-order nonlinear devices, their optimization and limitations The physical origins of second- and third-order nonlinearities Typical frequency dispersion of nonlinearities, explained in terms of simple two- and three-level models Ultrafast and ultrahigh intensity processes Practice problems demonstrating the design of such nonlinear devices as frequency doublers and optical oscillators Based on more than twenty years of lectures at the College of Optics and Photonics (CREOL) at the University of Central Florida, Nonlinear Optics introduces all topics from the ground up, making the material easily accessible not only for physicists, but also for chemists and materials scientists, as well as professionals in diverse areas of optics, from laser physics to electrical engineering.
Multi-photon excitation states of poly-atomic molecules undergoing a self-interaction via Kerr effect related processes are of great interest today. Their successful study must be both analytical and by means of modern quantum field theoretical tools. This book deals with these and related topics by developing modern quantum field theory methods for the analysis of radiative states in a nonlinear quantum-optical system. These lecture notes are ideally suited to graduate mathematical physics and physics students, but can also be of interest to mathematicians involved in applied physics problems, and physicists and chemists studying phenomena related with modern quantum-optical devices.
The development of new highly nonlinear fibers - referred to as microstructured fibers, holey fibers and photonic crystal fibers - is the next generation technology for all-optical signal processing and biomedical applications. This new edition has been thoroughly updated to incorporate these key technology developments. The book presents sound coverage of the fundamentals of lightwave technology, along with material on pulse compression techniques and rare-earth-doped fiber amplifiers and lasers. The extensively revised chapters include information on fiber-optic communication systems and the ultrafast signal processing techniques that make use of nonlinear phenomena in optical fibers. New material focuses on the applications of highly nonlinear fibers in areas ranging from wavelength laser tuning and nonlinear spectroscopy to biomedical imaging and frequency metrology. Technologies such as quantum cryptography, quantum computing, and quantum communications are also covered in a new chapter. This book will be an ideal reference for: R&D engineers working on developing next generation optical components; scientists involved with research on fiber amplifiers and lasers; graduate students and researchers working in the fields of optical communications and quantum information. The only book on how to develop nonlinear fiber optic applications Two new chapters on the latest developments; Highly Nonlinear Fibers and Quantum Applications Coverage of biomedical applications