Download Free Applied Mineralogical Thermodynamics Book in PDF and EPUB Free Download. You can read online Applied Mineralogical Thermodynamics and write the review.

Thermodynamic treatment of mineral equilibria, a topic central to mineralogical thermodynamics, can be traced back to the tum of the century, when J. H. Van't Hoff and his associates pioneered in applying thermodynamics to the mineral assemblages observed in the Stassfurt salt deposit. Although other renowned researchers joined forces to develop the subject - H. E. Boeke even tried to popularize it by giving an overview of the early developments in his "Grundlagen der physikalisch-chemischen Petrographie", Berlin, 1915 - it remained, on the whole, an esoteric subject for the majority of the contemporary geological community. Seen that way, mineralogical thermodynamics came of age during the last four decades, and evolved very rapidly into a mainstream discipline of geochemistry. It has contributed enormously to our understanding of the phase equilibria of mineral systems, and has helped put mineralogy and petrology on a firm quantitative basis. In the wake of these developments, academic curricula now require the students of geology to take a course in basic thermodynamics, traditionally offered by the departments of chemistry. Building on that foundation, a supplementary course is generally offered to familiarize the students with diverse mineralogical applications of thermo dynamics. This book draws from the author's experience in giving such a course, and has been tailored to cater to those who have had a previous exposure to the basic concepts of chemical thermodynamics.
This book covers the entire spectrum of mineralogy and consolidates its applications in different fields. Part I starts with the very basic concept of mineralogy describing in detail the implications of the various aspects of mineral chemistry, crystallographic structures and their effects producing different mineral properties. Part II of the book describes different aspects of mineralogy like geothermobarometry, mineral thermodynamics and phase diagrams, mineral exploration and analysis, and marine minerals. Finally Part III handles the applications in industrial, medicinal and environmental mineralogy along with precious and semiprecious stone studies. The various analytical techniques and their significance in handling specific types of mineralogical problems are also covered.
This book presents the fundamental principles of thermodynamics for geosciences, based on the author’s own courses over a number of years. Many examples help to understand how mineralogical problems can be solved by applying thermodynamic principles.
Volume 70 of Reviews in Mineralogy and Geochemistry represents an extensive review of the material presented by the invited speakers at a short course on Thermodynamics and Kinetics of Water-Rock Interaction held prior to the 19th annual V. M. Goldschmidt Conference in Davos, Switzerland (June 19-21, 2009). Contents: Thermodynamic Databases for Water-Rock Interaction Thermodynamics of Solid Solution-Aqueous Solution Systems Mineral Replacement Reactions Thermodynamic Concepts in Modeling Sorption at the Mineral-Water Interface Surface Complexation Modeling: Mineral Fluid Equilbria at the Molecular Scale The Link Between Mineral Dissolution/Precipitation Kinetics and Solution Chemistry Organics in Water-Rock Interactions Mineral Precipitation Kinetics Towards an Integrated Model of Weathering, Climate, and Biospheric Processes Approaches to Modeling Weathered Regolith Fluid-Rock Interaction: A Reactive Transport Approach Geochemical Modeling of Reaction Paths and Geochemical Reaction Networks
Today large numbers of geoscientists apply thermodynamic theory to solu tions of a variety of problems in earth and planetary sciences. For most problems in chemistry, the application of thermodynamics is direct and rewarding. Geoscientists, however, deal with complex inorganic and organic substances. The complexities in the nature of mineralogical substances arise due to their involved crystal structure and multicomponental character. As a result, thermochemical solutions of many geological-planetological problems should be attempted only with a clear understanding of the crystal-chemical and thermochemical character of each mineral. The subject of physical geochemistry deals with the elucidation and application of physico-chemical principles to geosciences. Thermodynamics of mineral phases and crystalline solutions form an integral part of it. Developments in mineralogic thermody namics in recent years have been very encouraging, but do not easily reach many geoscientists interested mainly in applications. This series is to provide geoscientists and planetary scientists with current information on the develop ments in thermodynamics of mineral systems, and also provide the active researcher in this rapidly developing field with a forum through which he can popularize the important conclusions of his work. In the first several volumes, we plan to publish original contributions (with an abundant supply of back ground material for the uninitiated reader) and thoughtful reviews from a number of researchers on mineralogic thermodynamics, on the application of thermochemistry to planetary phase equilibria (including meteorites), and on kinetics of geochemical reactions.
With an approach that stresses the fundamental solid state behaviour of minerals, this 1995 text surveys the physics and chemistry of earth materials.
Based on a university course, this book provides an exposition of a large spectrum of geological, geochemical and geophysical problems that are amenable to thermodynamic analysis. It also includes selected problems in planetary sciences, relationships between thermodynamics and microscopic properties, particle size effects, methods of approximation of thermodynamic properties of minerals, and some kinetic ramifications of entropy production. The textbook will enable graduate students and researchers alike to develop an appreciation of the fundamental principles of thermodynamics, and their wide ranging applications to natural processes and systems.
This is the second volume of a four volume set intended to describe the techniques and applications of thermoanalytical and calorimetric methods. The general techniques and methodology are covered extensively in Volume 1, along with the fundamental physicochemical background needed. Consequently the subsequent volumes dwell on the applications of these powerful and versatile methods, while assuming a familiarity with the techniques.Volume 2 covers major areas of inorganic materials and some related general topics, e.g., catalysis, geochemistry, and the preservation of art. The chapters are written by established practitioners in the field with the intent of presenting a sampling of the how thermoanalytical and calorimetric methods have contributed to progress in their respective areas. The chapters are not intended as exhaustive reviews of the topics, but rather, to illustrate to the readers what has been achieved and to encourage them to consider extending these applications further into their domains of interest.- Provides an appreciation for how thermal methods can be applied to inorganic materials and processes.- Provides an insight into the versatility of thermal methods.- Shares the experiences of experts in a variety of different fields.- A valuable reference source covering a huge area of materials coverage.
Volume 8 of Reviews in Mineralogy deals with both descriptions of the kinetics of geochemical processes: the phenomenological and the atomistic. The former relies on macroscopic variables (e.g. temperature or concentrations) to describe the rates of
First published in 1848, authored by J.D. Dana, the Manual of Mineral Science now enters its 23rd edition. This new edition continues in the footsteps or its predecessors as the standard textbook in Mineralogy/Mineral Science/Earth Materials/Rocks and Minerals courses. This new edition contains 22 chapters, instead of 14 as in the prior edition. This is the result of having packaged coherent subject matter into smaller, more easily accessible units. Each chapter has a new and expanded introductory statement, which gives the user a quick overview of what is to come. Just before these introductions, each chapter features a new illustration that highlights some aspect of the subject in that particular chapter. All such changes make the text more readable, user-friendly and searchable. Many of the first 14 chapters are reasonably independent of each other, allowing for great flexibility in an instructor's preferred subject sequence. The majority of illustrations in this edition were re-rendered and/or redesigned and many new photographs, mainly of mineral specimens, were added. NEW Thoroughly Revised Lab Manual ISBN13: 978-0-471-77277-4 Also published by John Wiley & Sons, the thoroughly updated Laboratory Manual: Minerals and Rocks: Exercises in Crystal and Mineral Chemistry, Crystallography, X-ray Powder Diffraction, Mineral and Rock Identification, and Ore Mineralogy, 3e, is for use in the mineralogy laboratory and covers the subject matter in the same sequence as the Manual of Mineral Science, 23e.