Download Free Applied Integer Linear Programming Book in PDF and EPUB Free Download. You can read online Applied Integer Linear Programming and write the review.

An accessible treatment of the modeling and solution of integer programming problems, featuring modern applications and software In order to fully comprehend the algorithms associated with integer programming, it is important to understand not only how algorithms work, but also why they work. Applied Integer Programming features a unique emphasis on this point, focusing on problem modeling and solution using commercial software. Taking an application-oriented approach, this book addresses the art and science of mathematical modeling related to the mixed integer programming (MIP) framework and discusses the algorithms and associated practices that enable those models to be solved most efficiently. The book begins with coverage of successful applications, systematic modeling procedures, typical model types, transformation of non-MIP models, combinatorial optimization problem models, and automatic preprocessing to obtain a better formulation. Subsequent chapters present algebraic and geometric basic concepts of linear programming theory and network flows needed for understanding integer programming. Finally, the book concludes with classical and modern solution approaches as well as the key components for building an integrated software system capable of solving large-scale integer programming and combinatorial optimization problems. Throughout the book, the authors demonstrate essential concepts through numerous examples and figures. Each new concept or algorithm is accompanied by a numerical example, and, where applicable, graphics are used to draw together diverse problems or approaches into a unified whole. In addition, features of solution approaches found in today's commercial software are identified throughout the book. Thoroughly classroom-tested, Applied Integer Programming is an excellent book for integer programming courses at the upper-undergraduate and graduate levels. It also serves as a well-organized reference for professionals, software developers, and analysts who work in the fields of applied mathematics, computer science, operations research, management science, and engineering and use integer-programming techniques to model and solve real-world optimization problems.
Theory of Linear and Integer Programming Alexander Schrijver Centrum voor Wiskunde en Informatica, Amsterdam, The Netherlands This book describes the theory of linear and integer programming and surveys the algorithms for linear and integer programming problems, focusing on complexity analysis. It aims at complementing the more practically oriented books in this field. A special feature is the author's coverage of important recent developments in linear and integer programming. Applications to combinatorial optimization are given, and the author also includes extensive historical surveys and bibliographies. The book is intended for graduate students and researchers in operations research, mathematics and computer science. It will also be of interest to mathematical historians. Contents 1 Introduction and preliminaries; 2 Problems, algorithms, and complexity; 3 Linear algebra and complexity; 4 Theory of lattices and linear diophantine equations; 5 Algorithms for linear diophantine equations; 6 Diophantine approximation and basis reduction; 7 Fundamental concepts and results on polyhedra, linear inequalities, and linear programming; 8 The structure of polyhedra; 9 Polarity, and blocking and anti-blocking polyhedra; 10 Sizes and the theoretical complexity of linear inequalities and linear programming; 11 The simplex method; 12 Primal-dual, elimination, and relaxation methods; 13 Khachiyan's method for linear programming; 14 The ellipsoid method for polyhedra more generally; 15 Further polynomiality results in linear programming; 16 Introduction to integer linear programming; 17 Estimates in integer linear programming; 18 The complexity of integer linear programming; 19 Totally unimodular matrices: fundamental properties and examples; 20 Recognizing total unimodularity; 21 Further theory related to total unimodularity; 22 Integral polyhedra and total dual integrality; 23 Cutting planes; 24 Further methods in integer linear programming; Historical and further notes on integer linear programming; References; Notation index; Author index; Subject index
Learn practical applications of Integer Linear Programming from former Polish Olympiad in Informatics finalist and experienced software development engineer Adam Furmanek. Topics covered in the book include ILP theory, complex operators like multiplication and exponentiation, imperative structures like loops and conditions, nondeterministic Turing machine emulation in ILP, solvers comparison, and 30 puzzles and riddles solved with ready to use source code. The text is structured to inspire the reader to explore and develop new ideas. Each puzzle contains hints, full solution with explanation, and logs from running the model with multiple state-of-the-art ILP solvers. This book can be used as a complete ILP course, declarative programming course, or constraint programming introduction.About the author: Adam Furmanek is a Polish Olympiad in Informatics finalist, author of MilpManager library, author of .NET Internals Cookbook, public speaker, and software development engineer.
This hands-on tutorial text for non-experts demonstrates biological applications of a versatile modeling and optimization technique.
This unique reference/text details the theoretical and practical aspects of linear and integer programming - covering a wide range of subjects, including duality, optimality criteria, sensitivity analysis, and numerous solution techniques for linear programming problems. Requiring only an elementary knowledge of set theory, trigonometry, and calculus, Linear and Integer Programming reflects both the problem-analyzing and problem-solving abilities of linear and integer programming ... presents the more rigorous mathematical material in such a way that it can be easily skipped without disturbing the readability of the text ... contains important pedagogical features such as a user-friendly, IBM-compatible computer software package for solving linear-programming problems, numerous case studies, fully worked examples, helpful end-of-chapter exercises, the answers to selected problems, key literature citations, and over 1375 equations, drawings, and tables ... and more. Linear and Integer programming is a fundamental reference for applied mathematicians, operations researchers, computer scientists, economists, and industrial engineers, as well as an ideal text for upper-level undergraduate and graduate students in this disciplines.
This book presents the state-of-the-art methods in Linear Integer Programming, including some new algorithms and heuristic methods developed by the authors in recent years. Topics as Characteristic equation (CE), application of CE to bi-objective and multi-objective problems, Binary integer problems, Mixed-integer models, Knapsack models, Complexity reduction, Feasible-space reduction, Random search, Connected graph are also treated.
This Fourth Edition introduces the latest theory and applications in optimization. It emphasizes constrained optimization, beginning with a substantial treatment of linear programming and then proceeding to convex analysis, network flows, integer programming, quadratic programming, and convex optimization. Readers will discover a host of practical business applications as well as non-business applications. Topics are clearly developed with many numerical examples worked out in detail. Specific examples and concrete algorithms precede more abstract topics. With its focus on solving practical problems, the book features free C programs to implement the major algorithms covered, including the two-phase simplex method, primal-dual simplex method, path-following interior-point method, and homogeneous self-dual methods. In addition, the author provides online JAVA applets that illustrate various pivot rules and variants of the simplex method, both for linear programming and for network flows. These C programs and JAVA tools can be found on the book's website. The website also includes new online instructional tools and exercises.
This book is an elegant and rigorous presentation of integer programming, exposing the subject’s mathematical depth and broad applicability. Special attention is given to the theory behind the algorithms used in state-of-the-art solvers. An abundance of concrete examples and exercises of both theoretical and real-world interest explore the wide range of applications and ramifications of the theory. Each chapter is accompanied by an expertly informed guide to the literature and special topics, rounding out the reader’s understanding and serving as a gateway to deeper study. Key topics include: formulations polyhedral theory cutting planes decomposition enumeration semidefinite relaxations Written by renowned experts in integer programming and combinatorial optimization, Integer Programming is destined to become an essential text in the field.
Mathematical programming: an overview; solving linear programs; sensitivity analysis; duality in linear programming; mathematical programming in practice; integration of strategic and tactical planning in the aluminum industry; planning the mission and composition of the U.S. merchant Marine fleet; network models; integer programming; design of a naval tender job shop; dynamic programming; large-scale systems; nonlinear programming; a system for bank portfolio planning; vectors and matrices; linear programming in matrix form; a labeling algorithm for the maximun-flow network problem.
A guide to modern optimization applications and techniques in newly emerging areas spanning optimization, data science, machine intelligence, engineering, and computer sciences Optimization Techniques and Applications with Examples introduces the fundamentals of all the commonly used techniques in optimization that encompass the broadness and diversity of the methods (traditional and new) and algorithms. The author—a noted expert in the field—covers a wide range of topics including mathematical foundations, optimization formulation, optimality conditions, algorithmic complexity, linear programming, convex optimization, and integer programming. In addition, the book discusses artificial neural network, clustering and classifications, constraint-handling, queueing theory, support vector machine and multi-objective optimization, evolutionary computation, nature-inspired algorithms and many other topics. Designed as a practical resource, all topics are explained in detail with step-by-step examples to show how each method works. The book’s exercises test the acquired knowledge that can be potentially applied to real problem solving. By taking an informal approach to the subject, the author helps readers to rapidly acquire the basic knowledge in optimization, operational research, and applied data mining. This important resource: Offers an accessible and state-of-the-art introduction to the main optimization techniques Contains both traditional optimization techniques and the most current algorithms and swarm intelligence-based techniques Presents a balance of theory, algorithms, and implementation Includes more than 100 worked examples with step-by-step explanations Written for upper undergraduates and graduates in a standard course on optimization, operations research and data mining, Optimization Techniques and Applications with Examples is a highly accessible guide to understanding the fundamentals of all the commonly used techniques in optimization.