Download Free Applied Digital Control Book in PDF and EPUB Free Download. You can read online Applied Digital Control and write the review.

An essential core text, this volume develops theoretical foundations and explains how control systems work in real industrial situations. Several case histories assist students in visualizing applications. 1992 edition.
Good,No Highlights,No Markup,all pages are intact, Slight Shelfwear,may have the corners slightly dented, may have slight color changes/slightly damaged spine.
This updated edition of a work on applied digital control incorporates new chapters on system robustness and realistic adaptive control. The book also discusses the practicalities of achieving adaptive control in an industrial situation.
Combines the theory and the practice of applied digital control This book presents the theory and application of microcontroller based automatic control systems. Microcontrollers are single-chip computers which can be used to control real-time systems. Low-cost, single chip and easy to program, they have traditionally been programmed using the assembly language of the target processor. Recent developments in this field mean that it is now possible to program these devices using high-level languages such as BASIC, PASCAL, or C. As a result, very complex control algorithms can be developed and implemented on the microcontrollers. Presenting a detailed treatment of how microcontrollers can be programmed and used in digital control applications, this book: * Introduces the basic principles of the theory of digital control systems. * Provides several working examples of real working mechanical, electrical and fluid systems. * Covers the implementation of control algorithms using microcontrollers. * Examines the advantages and disadvantages of various realization techniques. * Describes the use of MATLAB in the analysis and design of control systems. * Explains the sampling process, z-transforms, and the time response of discrete-time systems in detail. Practising engineers in industry involved with the design and implementation of computer control systems will find Microcontroller Based Applied Digital Control an invaluable resource. In addition, researchers and students in control engineering and electrical engineering will find this book an excellent research tool.
This textbook introduces senior undergraduate and beginning graduate students of mechanical engineering to the field of digital control with an emphasis on applications. Both transform-based and state-variable approaches are included, with a brief introduction to system identification. The material requires some understanding of the Laplace transform and assumes that the reader has studied linear feedback control systems. Adopting an accessible, “tutorial” format, the text presents a clear and concise treatment of Linear Difference Equations, Discrete Simulation of Continuous Systems, Sampled Data Systems, Design using Laplace and Z Transforms, Introduction to Continuous State Space, Digital Control Design using State Space Methods (including state estimators), and System Identification using Least Squares.
Master the basic concepts and methodologies of digital signal processing with this systematic introduction, without the need for an extensive mathematical background. The authors lead the reader through the fundamental mathematical principles underlying the operation of key signal processing techniques, providing simple arguments and cases rather than detailed general proofs. Coverage of practical implementation, discussion of the limitations of particular methods and plentiful MATLAB illustrations allow readers to better connect theory and practice. A focus on algorithms that are of theoretical importance or useful in real-world applications ensures that students cover material relevant to engineering practice, and equips students and practitioners alike with the basic principles necessary to apply DSP techniques to a variety of applications. Chapters include worked examples, problems and computer experiments, helping students to absorb the material they have just read. Lecture slides for all figures and solutions to the numerous problems are available to instructors.
Many embedded engineers and programmers who need to implement basic process or motion control as part of a product design do not have formal training or experience in control system theory. Although some projects require advanced and very sophisticated control systems expertise, the majority of embedded control problems can be solved without resorting to heavy math and complicated control theory. However, existing texts on the subject are highly mathematical and theoretical and do not offer practical examples for embedded designers. This book is different;it presents mathematical background with sufficient rigor for an engineering text, but it concentrates on providing practical application examples that can be used to design working systems, without needing to fully understand the math and high-level theory operating behind the scenes. The author, an engineer with many years of experience in the application of control system theory to embedded designs, offers a concise presentation of the basics of control theory as it pertains to an embedded environment. - Practical, down-to-earth guide teaches engineers to apply practical control theorems without needing to employ rigorous math - Covers the latest concepts in control systems with embedded digital controllers
FPGAs have almost entirely replaced the traditional Application Specific Standard Parts (ASSP) such as the 74xx logic chip families because of their superior size, versatility, and speed. For example, FPGAs provide over a million fold increase in gates compared to ASSP parts. The traditional approach for hands-on exercises has relied on ASSP parts, primarily because of their simplicity and ease of use for the novice. Not only is this approach technically outdated, but it also severely limits the complexity of the designs that can be implemented. By introducing the readers to FPGAs, they are being familiarized with current digital technology and the skills to implement complex, sophisticated designs. However, working with FGPAs comes at a cost of increased complexity, notably the mastering of an HDL language, such as Verilog. Therefore, this book accomplishes the following: first, it teaches basic digital design concepts and then applies them through exercises; second, it implements these digital designs by teaching the user the syntax of the Verilog language while implementing the exercises. Finally, it employs contemporary digital hardware, such as the FPGA, to build a simple calculator, a basic music player, a frequency and period counter and it ends with a microprocessor being embedded in the fabric of the FGPA to communicate with the PC. In the process, readers learn about digital mathematics and digital-to-analog converter concepts through pulse width modulation.
This best-selling text focuses on the analysis and design of complicated dynamics systems. CHOICE called it ""a high-level, concise book that could well be used as a reference by engineers, applied mathematicians, and undergraduates. The format is good, the presentation clear, the diagrams instructive, the examples and problems helpful...References and a multiple-choice examination are included.