Download Free Applied Analysis Optimization And Soft Computing Book in PDF and EPUB Free Download. You can read online Applied Analysis Optimization And Soft Computing and write the review.

This book contains select contributions presented at the International Conference on Nonlinear Applied Analysis and Optimization (ICNAAO-2021), held at the Department of Mathematics Sciences, Indian Institute of Technology (BHU) Varanasi, India, from 21–23 December 2021. The book discusses topics in the areas of nonlinear analysis, fixed point theory, dynamical systems, optimization, fractals, applications to differential/integral equations, signal and image processing, and soft computing, and exposes the young talents with the newer dimensions in these areas with their practical approaches and to tackle the real-life problems in engineering, medical and social sciences. Scientists from the U.S.A., Austria, France, Mexico, Romania, and India have contributed their research. All the submissions are peer reviewed by experts in their fields.
Presents the latest scholarly research on the concepts, paradigms, and algorithms of computational intelligence and its constituent methodologies, such as evolutionary computation, neural networks, and fuzzy logic. This volume ncludes coverage on a broad range of topics and perspectives such as cloud computing, sampling in optimization, and swarm intelligence.
This new volume explores a variety of modern techniques that deal with estimated models and give resolutions to complex real-life issues. Soft computing has played a crucial role not only with theoretical paradigms but is also popular for its pivotal role for designing a large variety of expert systems and artificial intelligence-based applications. Involving the concepts and practices of soft computing in conjunction with other frontier research domains, this book begins with the basics and goes on to explore a variety of modern applications of soft computing in areas such as approximate reasoning, artificial neural networks, Bayesian networks, big data analytics, bioinformatics, cloud computing, control systems, data mining, functional approximation, fuzzy logic, genetic and evolutionary algorithms, hybrid models, machine learning, metaheuristics, neuro fuzzy system, optimization, randomized searches, and swarm intelligence. This book will be helpful to a wide range of readers who wish to learn applications of soft computing approaches. It will be useful for academicians, researchers, students, and machine learning experts who use soft computing techniques and algorithms to develop cutting-edge artificial intelligence-based applications.
The present book is based on the research papers presented in the International Conference on Soft Computing for Problem Solving (SocProS 2012), held at JK Lakshmipat University, Jaipur, India. This book provides the latest developments in the area of soft computing and covers a variety of topics, including mathematical modeling, image processing, optimization, swarm intelligence, evolutionary algorithms, fuzzy logic, neural networks, forecasting, data mining, etc. The objective of the book is to familiarize the reader with the latest scientific developments that are taking place in various fields and the latest sophisticated problem solving tools that are being developed to deal with the complex and intricate problems that are otherwise difficult to solve by the usual and traditional methods. The book is directed to the researchers and scientists engaged in various fields of Science and Technology.
This two-volume book presents outcomes of the 7th International Conference on Soft Computing for Problem Solving, SocProS 2017. This conference is a joint technical collaboration between the Soft Computing Research Society, Liverpool Hope University (UK), the Indian Institute of Technology Roorkee, the South Asian University New Delhi and the National Institute of Technology Silchar, and brings together researchers, engineers and practitioners to discuss thought-provoking developments and challenges in order to select potential future directions The book presents the latest advances and innovations in the interdisciplinary areas of soft computing, including original research papers in the areas including, but not limited to, algorithms (artificial immune systems, artificial neural networks, genetic algorithms, genetic programming, and particle swarm optimization) and applications (control systems, data mining and clustering, finance, weather forecasting, game theory, business and forecasting applications). It is a valuable resource for both young and experienced researchers dealing with complex and intricate real-world problems for which finding a solution by traditional methods is a difficult task.
Technology/Engineering/Mechanical Provides all the tools needed to begin solving optimization problems using MATLAB® The Second Edition of Applied Optimization with MATLAB® Programming enables readers to harness all the features of MATLAB® to solve optimization problems using a variety of linear and nonlinear design optimization techniques. By breaking down complex mathematical concepts into simple ideas and offering plenty of easy-to-follow examples, this text is an ideal introduction to the field. Examples come from all engineering disciplines as well as science, economics, operations research, and mathematics, helping readers understand how to apply optimization techniques to solve actual problems. This Second Edition has been thoroughly revised, incorporating current optimization techniques as well as the improved MATLAB® tools. Two important new features of the text are: Introduction to the scan and zoom method, providing a simple, effective technique that works for unconstrained, constrained, and global optimization problems New chapter, Hybrid Mathematics: An Application, using examples to illustrate how optimization can develop analytical or explicit solutions to differential systems and data-fitting problems Each chapter ends with a set of problems that give readers an opportunity to put their new skills into practice. Almost all of the numerical techniques covered in the text are supported by MATLAB® code, which readers can download on the text's companion Web site www.wiley.com/go/venkat2e and use to begin solving problems on their own. This text is recommended for upper-level undergraduate and graduate students in all areas of engineering as well as other disciplines that use optimization techniques to solve design problems.
This book presents a collection of mathematical models that deals with the real scenario in the industries. The primary objective of this book is to explore various effective methods for inventory control and management using soft computing techniques. Inventory control and management is a very tedious task faced by all the organizations in any sector of the economy. It makes decisions for policies, activities, and procedures in order to make sure that the right amount of each item is held in stock at any time. Many industries suffer from indiscipline while ordering and production mismatch. It is essential to provide best ordering policy to control such kind of mismatch in the industries. All the mathematical model solutions are provided with the help of various soft computing optimization techniques to determine optimal ordering policy. This book is beneficial for practitioners, educators, and researchers. It is also helpful for retailers/managers for improving business functions and making more accurate and realistic decisions.
Nature-inspired computation is an interdisciplinary topic area that connects the natural sciences to computer science. Since natural computing is utilized in a variety of disciplines, it is imperative to research its capabilities in solving optimization issues. The Handbook of Research on Natural Computing for Optimization Problems discusses nascent optimization procedures in nature-inspired computation and the innovative tools and techniques being utilized in the field. Highlighting empirical research and best practices concerning various optimization issues, this publication is a comprehensive reference for researchers, academicians, students, scientists, and technology developers interested in a multidisciplinary perspective on natural computational systems.
Soft computing has provided sophisticated methodologies for the development of intelligent decision support systems. Fast advances in soft computing technologies, such as fuzzy logic and systems, artificial neural networks and evolutionary computation, have made available powerful problem representation and modelling paradigms, and learning and optimisation mechanisms for addressing modern decision making issues. This book provides a comprehensive coverage of up-to-date conceptual frameworks in broadly perceived decision support systems and successful applications. Different from other existing books, this volume predominately focuses on applied decision support with soft computing. Areas covered include planning, management finance and administration in both the private and public sectors.