Download Free Applications Of Remote Sensing In Agriculture Book in PDF and EPUB Free Download. You can read online Applications Of Remote Sensing In Agriculture and write the review.

Applications of Remote Sensing in Agriculture contains the proceedings of the 48th Easter School in Agricultural Science, held at the University of Nottingham on April 3-7, 1989. The meeting invites 146 delegates from over 22 countries and contributions to this book come from nine countries. This book generally presents a review of the achievements of remote sensing in agriculture, establishes the state of the art, and gives pointers to developments. This text is organized into seven parts, wherein Parts I-III cover the principles of remote sensing, climate, soil, land classification, and crop inventories. Productivity; stress; techniques for agricultural applications; and opportunities, progress, and prospects in the field of remote sensing in agriculture are also discussed.
Crop models and remote sensing techniques have been combined and applied in agriculture and crop estimation on local and regional scales, or worldwide, based on the simultaneous development of crop models and remote sensing. The literature shows that many new remote sensing sensors and valuable methods have been developed for the retrieval of canopy state variables and soil properties from remote sensing data for assimilating the retrieved variables into crop models. At the same time, remote sensing has been used in a staggering number of applications for agriculture. This book sets the context for remote sensing and modelling for agricultural systems as a mean to minimize the environmental impact, while increasing production and productivity. The eighteen papers published in this Special Issue, although not representative of all the work carried out in the field of Remote Sensing for agriculture and crop modeling, provide insight into the diversity and the complexity of developments of RS applications in agriculture. Five thematic focuses have emerged from the published papers: yield estimation, land cover mapping, soil nutrient balance, time-specific management zone delineation and the use of UAV as agricultural aerial sprayers. All contributions exploited the use of remote sensing data from different platforms (UAV, Sentinel, Landsat, QuickBird, CBERS, MODIS, WorldView), their assimilation into crop models (DSSAT, AQUACROP, EPIC, DELPHI) or on the synergy of Remote Sensing and modeling, applied to cardamom, wheat, tomato, sorghum, rice, sugarcane and olive. The intended audience is researchers and postgraduate students, as well as those outside academia in policy and practice.
Remote Sensing in Precision Agriculture: Transforming Scientific Advancement into Innovation compiles the latest applications of remote sensing in agriculture using spaceborne, airborne and drones' geospatial data. The book presents case studies, new algorithms and the latest methods surrounding crop sown area estimation, determining crop health status, assessment of vegetation dynamics, crop diseases identification, crop yield estimation, soil properties, drone image analysis for crop damage assessment, and other issues in precision agriculture. This book is ideal for those seeking to explore and implement remote sensing in an effective and efficient manner with its compendium of scientifically and technologically sound information. - Presents a well-integrated collection of chapters, with quality, consistency and continuity - Provides the latest RS techniques in Precision Agriculture that are addressed by leading experts - Includes detailed, yet geographically global case studies that can be easily understood, reproduced or implemented - Covers geospatial data, with codes available through shared links
The environmental and economic importance of monitoring forests and agricultural resources has allowed remote sensing to be increasingly in the development of products and services responding to user needs.This volume presents the main applications in remote sensing for agriculture and forestry, including the primary soil properties, the estimation of the vegetation's biophysical variables, methods for mapping land cover, the contribution of remote sensing for crop and water monitoring, and the estimation of the forest cover properties (cover dynamic, height, biomass).This book, part of a set of six volumes, has been produced by scientists who are internationally renowned in their fields. It is addressed to students (engineers, Masters, PhD), engineers and scientists, specialists in remote sensing applied to agriculture and forestry.Through this pedagogical work, the authors contribute to breaking down the barriers that hinder the use of radar imaging techniques. - Provides clear and concise descriptions of modern remote sensing methods - Explores the most current remote sensing techniques with physical aspects of the measurement (theory) and their applications - Provides chapters on physical principles, measurement, and data processing for each technique described - Describes optical remote sensing technology, including a description of acquisition systems and measurement corrections to be made
Sensors, satellite photography, and multispectral imaging are associated with futuristic space and communications science. Increasingly, however, they are considered part of the future of agriculture. The use of advanced technologies for crop production is known as precision agriculture, and its rapid emergence means the potential for revolutionary change throughout the agricultural sector. Precision Agriculture in the 21st Century provides an overview of the specific technologies and practices under the umbrella of precision agriculture, exploring the full implications of their adoption by farmers and agricultural managers. The volume discusses how precision agriculture could dramatically affect decisionmaking in irrigation, crop selection, pest management, environmental issues, and pricing and market conditions. It also examines the geographical dimensions--farm, regional, national--of precision agriculture and looks at how quickly and how widely the agricultural community can be expected to adopt the new information technologies. Precision Agriculture in the 21st Century highlights both the uncertainties and the exciting possibilities of this emerging approach to farming. This book will be important to anyone concerned about the future of agriculture: policymakers, regulators, scientists, farmers, educators, students, and suppliers to the agricultural industry.
As the first volume in a unique series concentrating on in-depth discussions of GIS topics, GIS Applications in Agriculture examines ways that this powerful technology can help farmers/firms to produce a greater abundance of crops with more efficiency and at lower costs. Each chapter describes the nature of the problem, examines the purpose of the GIS application, describes methods used to develop the application, provides results, and offers a conclusion as well as other supportive information. When appropriate, it presents the underlying statistical approach for the GIS software that is used. This text also includes a CD-ROM that features data sets and the full color maps produced by the use of GIS.
Sensing Approaches for Precision Agriculture aims to bring together the ‘state of the art’ of the most popular sensing techniques and the current state of research on the application of sensors in Precision Agriculture (PA). Sensing is of great value in PA because it provides cheap and immediate data for management. This book gives a broad overview of sensing in PA and a coherent introduction for new professionals and research scientists. Readers are introduced to the potential applications of a range of different sensors, how they should be used properly and their limitations for use in PA. Chapters on specific topics and case studies provide depth and enable implementation of the methods by users. A general introduction about sensing techniques in PA is followed by Chapters 2–9 on the most important specific techniques in sensing and Chapters 10–13 include mini-case studies, each showing cutting-edge applications for different sensing methods. Finally, there is an Epilogue on how we expect sensors and analysis to develop.
Within the framework of Ispra Courses, a course on "Applications of Remote Sensing to Agrometeorology" was held from April 6th to 10th, 1987 at the Joint Research Centre of the European Communities, Ispra Italy. The purpose of the course was to familiarize scientists, active in Agrometeorology and related fields, with remote sensing techniques and their potential applications in their respective disciplines. Conventional ground investigations in various fields of natural sciences such as hydrology, pedology and agrometeorology can be supple mented by a range of instruments carried by airborne or earth orbiting platforms. The last few years, in particular, have seen many developments in this respect and a growing amount of information can now be derived not only from dedicated earth resources satellites such as the LANDSAT and SPOT, but also from other platforms such as METEOSAT and the series of NOAA-TIROS. Future platforms (ERS-l, Space Station, etc.) with their advanced sensors will further broaden the range of applications open to the investigators. The use of these data sources, together with field investigations, can lead, at a reduced cost, to a better characterization of the spatial and temporal properties of natural systems.
Novel technologies are playing an important role in the development of crop and livestock farming and have the potential to be the key drivers of sustainable intensification of agricultural systems. In particular, new sensors are now available with reduced dimensions, reduced costs, and increased performances, which can be implemented and integrated in production systems, providing more data and eventually an increase in information. It is of great importance to support the digital transformation, precision agriculture, and smart farming, and to eventually allow a revolution in the way food is produced. In order to exploit these results, authoritative studies from the research world are still needed to support the development and implementation of new solutions and best practices. This Special Issue is aimed at bringing together recent developments related to novel sensors and their proved or potential applications in agriculture.
′A magnificent achievement. A who′s who of contemporary remote sensing have produced an engaging, wide-ranging and scholarly review of the field in just one volume′ - Professor Paul Curran, Vice-Chancellor, Bournemouth University Remote Sensing acquires and interprets small or large-scale data about the Earth from a distance. Using a wide range of spatial, spectral, temporal, and radiometric scales Remote Sensing is a large and diverse field for which this Handbook will be the key research reference. Organized in four key sections: • Interactions of Electromagnetic Radiation with the Terrestrial Environment: chapters on Visible, Near-IR and Shortwave IR; Middle IR (3-5 micrometers); Thermal IR ; Microwave • Digital sensors and Image Characteristics: chapters on Sensor Technology; Coarse Spatial Resolution Optical Sensors ; Medium Spatial Resolution Optical Sensors; Fine Spatial Resolution Optical Sensors; Video Imaging and Multispectral Digital Photography; Hyperspectral Sensors; Radar and Passive Microwave Sensors; Lidar • Remote Sensing Analysis - Design and Implementation: chapters on Image Pre-Processing; Ground Data Collection; Integration with GIS; Quantitative Models in Remote Sensing; Validation and accuracy assessment; • Remote Sensing Analysis - Applications: LITHOSPHERIC SCIENCES: chapters on Topography; Geology; Soils; PLANT SCIENCES: Vegetation; Agriculture; HYDROSPHERIC and CRYSOPHERIC SCIENCES: Hydrosphere: Fresh and Ocean Water; Cryosphere; GLOBAL CHANGE AND HUMAN ENVIRONMENTS: Earth Systems; Human Environments & Links to the Social Sciences; Real Time Monitoring Systems and Disaster Management; Land Cover Change Illustrated throughout, an essential resource for the analysis of remotely sensed data, the SAGE Handbook of Remote Sensing provides researchers with a definitive statement of the core concepts and methodologies in the discipline.