Download Free Applications Of Reidemeister Torsions To 3 Dimensional Topology Book in PDF and EPUB Free Download. You can read online Applications Of Reidemeister Torsions To 3 Dimensional Topology and write the review.

From the reviews: "This is an excellent exposition about abelian Reidemeister torsions for three-manifolds." —Zentralblatt Math "This monograph contains a wealth of information many topologists will find very handy. ...Many of the new points of view pioneered by Turaev are gradually becoming mainstream and are spreading beyond the pure topology world. This monograph is a timely and very useful addition to the scientific literature." —Mathematical Reviews
This is a state-of-the-art introduction to the work of Franz Reidemeister, Meng Taubes, Turaev, and the author on the concept of torsion and its generalizations. Torsion is the oldest topological (but not with respect to homotopy) invariant that in its almost eight decades of existence has been at the center of many important and surprising discoveries. During the past decade, in the work of Vladimir Turaev, new points of view have emerged, which turned out to be the "right ones" as far as gauge theory is concerned. The book features mostly the new aspects of this venerable concept. The theoretical foundations of this subject are presented in a style accessible to those, who wish to learn and understand the main ideas of the theory. Particular emphasis is upon the many and rather diverse concrete examples and techniques which capture the subleties of the theory better than any abstract general result. Many of these examples and techniques never appeared in print before, and their choice is often justified by ongoing current research on the topology of surface singularities. The text is addressed to mathematicians with geometric interests who want to become comfortable users of this versatile invariant.
This book is an introduction to combinatorial torsions of cellular spaces and manifolds with special emphasis on torsions of 3-dimensional manifolds. The first two chapters cover algebraic foundations of the theory of torsions and various topological constructions of torsions due to K. Reidemeister, J.H.C. Whitehead, J. Milnor and the author. We also discuss connections between the torsions and the Alexander polynomials of links and 3-manifolds. The third (and last) chapter of the book deals with so-called refined torsions and the related additional structures on manifolds, specifically homological orientations and Euler structures. As an application, we give a construction of the multivariable Conway polynomial of links in homology 3-spheres. At the end of the book, we briefly describe the recent results of G. Meng, C.H. Taubes and the author on the connections between the refined torsions and the Seiberg-Witten invariant of 3-manifolds. The exposition is aimed at students, professional mathematicians and physicists interested in combinatorial aspects of topology and/or in low dimensional topology. The necessary background for the reader includes the elementary basics of topology and homological algebra.
In algebraic topology some classical invariants - such as Betti numbers and Reidemeister torsion - are defined for compact spaces and finite group actions. They can be generalized using von Neumann algebras and their traces, and applied also to non-compact spaces and infinite groups. These new L2-invariants contain very interesting and novel information and can be applied to problems arising in topology, K-Theory, differential geometry, non-commutative geometry and spectral theory. The book, written in an accessible manner, presents a comprehensive introduction to this area of research, as well as its most recent results and developments.
This volume is a collection of research papers devoted to the study of relationships between knot theory and the foundations of mathematics, physics, chemistry, biology and psychology. Included are reprints of the work of Lord Kelvin (Sir William Thomson) on the 19th century theory of vortex atoms, reprints of modern papers on knotted flux in physics and in fluid dynamics and knotted wormholes in general relativity. It also includes papers on Witten's approach to knots via quantum field theory and applications of this approach to quantum gravity and the Ising model in three dimensions. Other papers discuss the topology of RNA folding in relation to invariants of graphs and Vassiliev invariants, the entanglement structures of polymers, the synthesis of molecular Mobius strips and knotted molecules. The book begins with an article on the applications of knot theory to the foundations of mathematics and ends with an article on topology and visual perception. This volume will be of immense interest to all workers interested in new possibilities in the uses of knots and knot theory.
Part II. The geometry and topology of manifolds. This is the second volume of a three-volume introduction to modern geometry, with emphasis on applications to other areas of mathematics and theoretical physics. Topics covered include homotopy groups, fibre bundles, dynamical systems, and foliations. The exposition is simple and concrete, and in a terminology palatable to physicists.
Functional analysis is an important branch of mathematical analysis which deals with the transformations of functions and their algebraic and topological properties. Motivated by their large applicability to real life problems, applications of functional analysis have been the aim of an intensive study effort in the last decades, yielding significant progress in the theory of functions and functional spaces, differential and difference equations and boundary value problems, differential and integral operators and spectral theory, and mathematical methods in physical and engineering sciences. The present volume is devoted to these investigations. The publication of this collection of papers is based on the materials of the mini-symposium "Functional Analysis in Interdisciplinary Applications" organized in the framework of the Fourth International Conference on Analysis and Applied Mathematics (ICAAM 2018, September 6–9, 2018). Presenting a wide range of topics and results, this book will appeal to anyone working in the subject area, including researchers and students interested to learn more about different aspects and applications of functional analysis. Many articles are written by experts from around the world, strengthening international integration in the fields covered. The contributions to the volume, all peer reviewed, contain numerous new results. This volume contains four different chapters. The first chapter contains the contributed papers focusing on various aspects of the theory of functions and functional spaces. The second chapter is devoted to the research on difference and differential equations and boundary value problems. The third chapter contains the results of studies on differential and integral operators and on the spectral theory. The fourth chapter is focused on the simulation of problems arising in real-world applications of applied sciences.
Geometric Topology is a foundational component of modern mathematics, involving the study of spacial properties and invariants of familiar objects such as manifolds and complexes. This volume, which is intended both as an introduction to the subject and as a wide ranging resouce for those already grounded in it, consists of 21 expository surveys written by leading experts and covering active areas of current research. They provide the reader with an up-to-date overview of this flourishing branch of mathematics.