Download Free Applications Of Parallel Data Processing For Biomedical Imaging Book in PDF and EPUB Free Download. You can read online Applications Of Parallel Data Processing For Biomedical Imaging and write the review.

Despite the remarkable progress witnessed in the last decade in big data utilization and parallel processing techniques, a persistent disparity exists between the capabilities of computer-aided diagnosis systems and the intricacies of practical healthcare scenarios. This disconnection is particularly evident in the complex landscape of artificial intelligence (AI) and IoT innovations within the biomedical realm. The need to bridge this gap and explore the untapped potential in healthcare and biomedical applications has never been more crucial. As we navigate through these challenges, Applications of Parallel Data Processing for Biomedical Imaging offers insights and solutions to reshape the future of biomedical research. The objective of Applications of Parallel Data Processing for Biomedical Imaging is to bring together researchers from both the computer science and biomedical research communities. By showcasing state-of-the-art deep learning and large data analysis technologies, the book provides a platform for the cross-pollination of ideas between AI-based and traditional methodologies. The collaborative effort seeks to have a substantial impact on data mining, AI, computer vision, biomedical research, healthcare engineering, and other related fields. This interdisciplinary approach positions the book as a cornerstone for scholars, professors, and professionals working in software and medical fields, catering to both graduate and undergraduate students eager to explore the evolving landscape of parallel computing, artificial intelligence, and their applications in biomedical research.
Deep Learning and Parallel Computing Environment for Bioengineering Systems delivers a significant forum for the technical advancement of deep learning in parallel computing environment across bio-engineering diversified domains and its applications. Pursuing an interdisciplinary approach, it focuses on methods used to identify and acquire valid, potentially useful knowledge sources. Managing the gathered knowledge and applying it to multiple domains including health care, social networks, mining, recommendation systems, image processing, pattern recognition and predictions using deep learning paradigms is the major strength of this book. This book integrates the core ideas of deep learning and its applications in bio engineering application domains, to be accessible to all scholars and academicians. The proposed techniques and concepts in this book can be extended in future to accommodate changing business organizations' needs as well as practitioners' innovative ideas. - Presents novel, in-depth research contributions from a methodological/application perspective in understanding the fusion of deep machine learning paradigms and their capabilities in solving a diverse range of problems - Illustrates the state-of-the-art and recent developments in the new theories and applications of deep learning approaches applied to parallel computing environment in bioengineering systems - Provides concepts and technologies that are successfully used in the implementation of today's intelligent data-centric critical systems and multi-media Cloud-Big data
Data Fusion Methodology and Applications explores the data-driven discovery paradigm in science and the need to handle large amounts of diverse data. Drivers of this change include the increased availability and accessibility of hyphenated analytical platforms, imaging techniques, the explosion of omics data, and the development of information technology. As data-driven research deals with an inductive attitude that aims to extract information and build models capable of inferring the underlying phenomena from the data itself, this book explores the challenges and methodologies used to integrate data from multiple sources, analytical platforms, different modalities, and varying timescales. - Presents the first comprehensive textbook on data fusion, focusing on all aspects of data-driven discovery - Includes comprehensible, theoretical chapters written for large and diverse audiences - Provides a wealth of selected application to the topics included
The processing of medical images in a reasonable timeframe and with high definition is very challenging. This volume helps to meet that challenge by presenting a thorough overview of medical imaging modalities, its processing, high-performance computing, and the need to embed parallelism in medical image processing techniques to achieve efficient and fast results. With contributions from researchers from prestigious laboratories and educational institutions, High-Performance Medical Image Processing provides important information on medical image processing techniques, parallel computing techniques, and embedding parallelism in different image processing techniques. A comprehensive review of parallel algorithms in medical image processing problems is a key feature of this book. The volume presents the relevant theoretical frameworks and the latest empirical research findings in the area and provides detailed descriptions about the diverse high-performance techniques. Topics discussed include parallel computing, multicore architectures and their applications in image processing, machine learning applications, conventional and advanced magnetic resonance imaging methods, hyperspectral image processing, algorithms for segmenting 2D slices for 3D viewing, and more. Case studies, such as on the detection of cancer tumors, expound on the information presented. Key features: Provides descriptions of different medical imaging modalities and their applications Discusses the basics and advanced aspects of parallel computing with different multicore architectures Expounds on the need for embedding data and task parallelism in different medical image processing techniques Presents helpful examples and case studies of the discussed methods This book will be valuable for professionals, researchers, and students working in the field of healthcare engineering, medical imaging technology, applications in machine and deep learning, and more. It is also appropriate for courses in computer engineering, biomedical engineering and electrical engineering based on artificial intelligence, parallel computing, high performance computing, and machine learning and its applications in medical imaging.
This book constitutes the workshops of the 15th International Conference on Parallel Computing, Euro-Par 2009, held in Delft, The Netherlands, in August 2009. These focus on advanced specialized topics in parallel and distributed computing and reflect new scientific and technological developments.
Proper analysis of image and multimedia data requires efficient extraction and segmentation techniques. Among the many computational intelligence approaches, the soft computing paradigm is best equipped with several tools and techniques that incorporate intelligent concepts and principles. This book is dedicated to object extraction, image segmentation, and edge detection using soft computing techniques with extensive real-life application to image and multimedia data. The authors start with a comprehensive tutorial on the basics of brain structure and learning, and then the key soft computing techniques, including evolutionary computation, neural networks, fuzzy sets and fuzzy logic, and rough sets. They then present seven chapters that detail the application of representative techniques to complex image processing tasks such as image recognition, lighting control, target tracking, object extraction, and edge detection. These chapters follow a structured approach with detailed explanations of the problems, solutions, results, and conclusions. This is both a standalone textbook for graduates in computer science, electrical engineering, system science, and information technology, and a reference for researchers and engineers engaged with pattern recognition, image processing, and soft computing.
Intelligent Data Analysis for Biomedical Applications: Challenges and Solutions presents specialized statistical, pattern recognition, machine learning, data abstraction and visualization tools for the analysis of data and discovery of mechanisms that create data. It provides computational methods and tools for intelligent data analysis, with an emphasis on problem-solving relating to automated data collection, such as computer-based patient records, data warehousing tools, intelligent alarming, effective and efficient monitoring, and more. This book provides useful references for educational institutions, industry professionals, researchers, scientists, engineers and practitioners interested in intelligent data analysis, knowledge discovery, and decision support in databases. - Provides the methods and tools necessary for intelligent data analysis and gives solutions to problems resulting from automated data collection - Contains an analysis of medical databases to provide diagnostic expert systems - Addresses the integration of intelligent data analysis techniques within biomedical information systems
The huge volume of multi-modal neuroimaging data across different neuroscience communities has posed a daunting challenge to traditional methods of data sharing, data archiving, data processing and data analysis. Neuroinformatics plays a crucial role in creating advanced methodologies and tools for the handling of varied and heterogeneous datasets in order to better understand the structure and function of the brain. These tools and methodologies not only enhance data collection, analysis, integration, interpretation, modeling, and dissemination of data, but also promote data sharing and collaboration. This Neuroinformatics Research Topic aims to summarize the state-of-art of the current achievements and explores the directions for the future generation of neuroinformatics infrastructure. The publications present solutions for data archiving, data processing and workflow, data mining, and system integration methodologies. Some of the systems presented are large in scale, geographically distributed, and already have a well-established user community. Some discuss opportunities and methodologies that facilitate large-scale parallel data processing tasks under a heterogeneous computational environment. We wish to stimulate on-going discussions at the level of the neuroinformatics infrastructure including the common challenges, new technologies of maximum benefit, key features of next generation infrastructure, etc. We have asked leading research groups from different research areas of neuroscience/neuroimaging to provide their thoughts on the development of a state of the art and highly-efficient neuroinformatics infrastructure. Such discussions will inspire and help guide the development of a state of the art, highly-efficient neuroinformatics infrastructure.
This cross-disciplinary book documents the key research challenges in the mathematical sciences and physics that could enable the economical development of novel biomedical imaging devices. It is hoped that the infusion of new insights from mathematical scientists and physicists will accelerate progress in imaging. Incorporating input from dozens of biomedical researchers who described what they perceived as key open problems of imaging that are amenable to attack by mathematical scientists and physicists, this book introduces the frontiers of biomedical imaging, especially the imaging of dynamic physiological functions, to the educated nonspecialist. Ten imaging modalities are covered, from the well-established (e.g., CAT scanning, MRI) to the more speculative (e.g., electrical and magnetic source imaging). For each modality, mathematics and physics research challenges are identified and a short list of suggested reading offered. Two additional chapters offer visions of the next generation of surgical and interventional techniques and of image processing. A final chapter provides an overview of mathematical issues that cut across the various modalities.