Download Free Applications Of Nanoscience In Photomedicine Book in PDF and EPUB Free Download. You can read online Applications Of Nanoscience In Photomedicine and write the review.

Nanoscience has become one of the key growth areas in recent years. It can be integrated into imaging and therapy to increase the potential for novel applications in the field of photomedicine. In the past commercial applications of nanoscience have been limited to materials science research only, however, in recent years nanoparticles are rapidly being incorporated into industrial and consumer products. This is mainly due to the expansion of biomedical related research and the burgeoning field of nanomedicine. Applications of Nanoscience in Photomedicine covers a wide range of nanomaterials including nanoparticles used for drug delivery and other emerging fields such as optofluidics, imaging and SERS diagnostics. Introductory chapters are followed by a section largely concerned with imaging, and finally a section on nanoscience-enabled therapeutics. - Covers a comprehensive up-to-date information on nanoscience - Focuses on the combination of photomedicine with nanotechnology to enhance the diversity of applications - Pioneers in the field have written their respective chapters - Opens a plethora of possibilities for developing future nanomedicine - Easy to understand and yet intensive coverage chapter by chapter
Nanoscience in Dermatology covers one of the two fastest growing areas within dermatological science, nanoscience and nanotechnology in dermatology. Recently, great progress has been made in the research and development of nanotechnologies and nanomaterials related to various applications in medicine and, in general, the life sciences. There is increasing enthusiasm for nanotechnology applications in dermatology (drug delivery, diagnostics, therapeutics, imaging, sensors, etc.) for understanding skin biology, improving early detection and treatment of skin diseases, and in the design and optimization of cosmetics. Light sensitive nanoparticles have recently been explored, opening a new era for the combined applications of light with nanotechnology, also called photonanodermatology. However, concerns have been raised regarding the adverse effects of intentional and unintentional nanoparticle exposure and their toxicity. Written by experts working in these exciting fields, this book extensively covers nanotechnology applications, together with the fundamentals and toxicity aspects. It not only addresses current applications of nanotechnology, but also discusses future trends of these ever-growing and rapidly changing fields, providing scientists and dermatologists with a clear understanding of the advantages and challenges of nanotechnology in skin medicine. - Provides knowledge of current and future applications of nanoscience and nanotechnology in dermatology - Outlines the fundamentals, methods, toxicity aspects, and other relevant aspects for nanotechnology based applications in dermatology - Coherently structured book written by experts working in the fields covered
Biomaterials for Organ and Tissue Regeneration: New Technologies and Future Prospects examines the use of biomaterials in applications related to artificial tissues and organs. With a strong focus on fundamental and traditional tissue engineering strategies, the book also examines how emerging and enabling technologies are being developed and applied. Sections provide essential information on biomaterial, cell properties and cell types used in organ generation. A section on state-of-the-art in organ regeneration for clinical purposes is followed by a discussion on enabling technologies, such as bioprinting, on chip organ systems and in silico simulations. - Provides a systematic overview of the field, from fundamentals, to current challenges and opportunities - Encompasses the classic paradigm of tissue engineering for creation of new functional tissue - Discusses enabling technologies such as bioprinting, organ-on-chip systems and in silico simulations
This book covers a wide range of topics relating to carbon nanomaterials, from synthesis and functionalization to applications in advanced biomedical devices and systems. As they possess unique and attractive chemical, physical, optical, and even magnetic properties for various applications, considerable effort has been made to employ carbon nanomaterials (e.g., fullerenes, carbon nanotubes, graphene, nanodiamond) as new materials for the development of novel biomedical tools, such as diagnostic sensors, imaging agents, and drug/gene delivery systems for both diagnostics and clinical treatment. Tremendous progress has been made and the scattered literature continues to grow rapidly. With chapters by world-renowned experts providing an overview of the state of the science as well as an understanding of the challenges that lie ahead, Carbon Nanomaterials for Biomedical Applications is essential reading not only for experienced scientists and engineers in biomedical and nanomaterials areas, but also for graduate students and advanced undergraduates in materials science and engineering, chemistry, and biology.
Providing the most comprehensive, up-to-date coverage of this exciting biomedical field, Handbook of Photomedicine gathers together a large team of international experts to give you a complete account of the application of light in healthcare and medical science. The book progresses logically from the history and fundamentals of photomedicine to di
The field of nanotechnology for targeted therapy initiated more than decade ago has grown fast and interest is increasing. Given the importance of the field for targeted drug and gene delivery systems, there are a large number of laboratory investigations today researching nanobiomaterials for diagnostic and therapeutic applications. Because of the ability of scientists to load nanoparticles with any agent, interest continues to grow and technology in this arena is rapidly evolving. These emerging nanobiomaterials-based medicines can overcome the disadvantages of traditional medicines by target-oriented and site-specific delivery of precise medicines (immunotherapeutic agents, chemotherapeutic agents, diagnostic agents, and so on). Pharmaceutical Nanobiotechnology for Targeted Therapy presents an updated overview of recent advancements in the field of pharmaceutical nanobiotechnology and nano-based drug and gene delivery systems. This comprehensive knowledge will allow researchers to discover innovative nanobiomaterials for targeted therapeutics. The chapters deal with various emerging nanobiomaterials for targeted therapeutic delivery systems and the writing is in a style that is easily disseminated and in a manner that can be readily adopted as sources for new and further studies. This book should be useful for researchers and professionals from academia and industry working in the field of nanotechnology, nanobiotechnology, as well as in the field of pharmaceutical nanotechnology. It should also be useful to those interested in a range of disciplines from material science, chemistry, molecular biology, polymer chemistry, and many more interdisciplinary areas.
Advanced Nanomaterials for Point of Care Diagnosis and Therapy provides an overview of technological and emerging novel trends in how point-of-care diagnostic devices are designed, miniaturized built, and delivered at different healthcare set ups. It describes the significant technological advances in fundamental diagnostic components and recent advances in fully integrated devices designed for specific clinical use. The book covers state-of-the-art fabrication of advances materials with broad spectrum therapeutic applications. It includes drug delivery, biosensing, bioimaging and targeting, and outlines the development of inexpensive, effective and portable in vitro diagnostics tools for any purpose that can be used onsite. Sections also discuss drug delivery, biosensing, bioimaging and targeting and various metal, metal oxide and non-metal-based nanomaterials that are developed, surface modified, and are being explored for diagnosis, targeting, drug delivery, drug release and imaging. The book concludes with current needs and future challenges in the field. Outlines the needs and challenges of point-of-care diagnostics Describes the fundamentals of application of nanomaterials as interesting building blocks for biosensing Overviews the different detection methods offered by using nanomaterials Explains the advantages and drawbacks of nanomaterial-based sensing strategies Describes the opportunities offered by technology as a cost-efficient biosensing platform
Molecular Impacts of Nanoparticles on Plants and Algae covers molecular mechanisms of plants/algae related to cellular uptake and translocation of nanoparticles, and genome, transcriptome, proteome, and metabolome responses against it. The book introduces readers to state-of-the-art developments and trends of nanoparticles and plants/algae including interaction of nanoparticles with biological compounds in vitro. Nanoscience and nanotechnology have rapidly been developed in the last few decades, and they have a wide range of applications in industry, medicine, food, and agriculture. In agriculture, nanoparticles (NPs) have successfully been used for growth regulation, crop protection and improvement. They are also employed to cope with plant nutrient deficiencies. A predicted significant increase in the output of NPs will cause the discharge of a remarkable number of NPs to ecosystems, creating a need to understand how to optimize or mitigate their impact depending on their potential impact. These include serious health concerns for living organisms in aquatic, terrestrial, and atmospheric environments as well as human health through their potential existence in plant-based foods. The impact of NPs on living organisms including plants and algae, and uptake, translocation and molecular response mechanisms should be carefully considered before producing and using nanoparticles in large amounts as NPs, when entered to the body, induce changes in gene expressions related to the photosystem, water transport, cell wall formation, and cell division. Further recent studies have showed that NPs are potential agents or stressors to alter proteome, transcriptome, genome and metabolome responses. Impacts of nanoparticles on molecular mechanisms of plants and algae presents the most recent findings on nanoparticle and plant/algae interaction by focusing to molecular response mechanisms at genome, transcriptome, proteome and metabolome levels. In addition, uptake and translocation mechanism of nanoparticles will be assessed both in plant and algae Throughout this book, the latest developments and discoveries will be highlighted as well as open problems and future challenges in molecular mechanisms of plants/algae as a response of nanoparticles. - Presents genome, transcriptome, proteome, and metabolome responses in plants/algae, along with cellular uptake and translocation mechanisms - Illustrates nano-particle-plant/algae interactions - Covers both simple and higher organisms, addressing both algae and plant