Download Free Applications Of Hyperstructure Theory Book in PDF and EPUB Free Download. You can read online Applications Of Hyperstructure Theory and write the review.

This book presents some of the numerous applications of hyperstructures, especially those that were found and studied in the last fifteen years. There are applications to the following subjects: 1) geometry; 2) hypergraphs; 3) binary relations; 4) lattices; 5) fuzzy sets and rough sets; 6) automata; 7) cryptography; 8) median algebras, relation algebras; 9) combinatorics; 10) codes; 11) artificial intelligence; 12) probabilities. Audience: Graduate students and researchers.
The book presents an updated study of hypergroups, being structured on 12 chapters in starting with the presentation of the basic notions in the domain: semihypergroups, hypergroups, classes of subhypergroups, types of homomorphisms, but also key notions: canonical hypergroups, join spaces and complete hypergroups. A detailed study is dedicated to the connections between hypergroups and binary relations, starting from connections established by Rosenberg and Corsini. Various types of binary relations are highlighted, in particular equivalence relations and the corresponding quotient structures, which enjoy certain properties: commutativity, cyclicity, solvability.A special attention is paid to the fundamental beta relationship, which leads to a group quotient structure. In the finite case, the number of non-isomorphic Rosenberg hypergroups of small orders is mentioned. Also, the study of hypergroups associated with relations is extended to the case of hypergroups associated to n-ary relations. Then follows an applied excursion of hypergroups in important chapters in mathematics: lattices, Pawlak approximation, hypergraphs, topology, with various properties, characterizations, varied and interesting examples. The bibliography presented is an updated one in the field, followed by an index of the notions presented in the book, useful in its study.
Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of neutralities as well as their interactions with different ideational spectra. In all classical algebraic structures, the law of compositions on a given set are well-defined, but this is a restrictive case because there are situations in science where a law of composition defined on a set may be only partially defined and partially undefined, which we call NeutroDefined, or totally undefined, which we call AntiDefined. Theory and Applications of NeutroAlgebras as Generalizations of Classical Algebra introduces NeutroAlgebra, an emerging field of research. This book provides a comprehensive collection of original work related to NeutroAlgebra and covers topics such as image retrieval, mathematical morphology, and NeutroAlgebraic structure. It is an essential resource for philosophers, mathematicians, researchers, educators and students of higher education, and academicians.
International Journal of Neutrosophic Science (IJNS) is a peer-review journal publishing high quality experimental and theoretical research in all areas of Neutrosophic and its Applications. Papers concern with neutrosophic logic and mathematical structures in the neutrosophic setting. Besides providing emphasis on topics like artificial intelligence, pattern recognition, image processing, robotics, decision making, data analysis, data mining, applications of neutrosophic mathematical theories contributions to economics, finance, management, industries, electronics, and communications are promoted.
This paper is concerned with the introduction of neutrosophic hypernear-rings. The concept of neutrosophic A-hypergroup of a hypernear-ring A; neutrosophic A(I)-hypergroup of a neutrosophic hypernear-ring A(I) and their respective neutrosophic substructures are defined. We investigate and present some interesting results arising from the study of hypernear-rings in neutrosophic environment. It is shown that a constant neutrosophic hypernear-ring in general is not a constant hypernear-ring. In addition, we consider the neutrosophic ideals, neutrosophic homomorphism and neutrosophic quotient hypernear-rings of neutrosophic hypernear-rings.
Neutrosophy (1995) is a new branch of philosophy that studies triads of the form (, , ), where is an entity {i.e. element, concept, idea, theory, logical proposition, etc.}, is the opposite of , while is the neutral (or indeterminate) between them, i.e., neither nor . Based on neutrosophy, the neutrosophic triplets were founded, which have a similar form (x, neut(x), anti(x)), that satisfy several axioms, for each element x in a given set. This collective book presents original research papers by many neutrosophic researchers from around the world, that report on the state-of-the-art and recent advancements of neutrosophic triplets, neutrosophic duplets, neutrosophic multisets and their algebraic structures – that have been defined recently in 2016 but have gained interest from world researchers. Connections between classical algebraic structures and neutrosophic triplet / duplet / multiset structures are also studied. And numerous neutrosophic applications in various fields, such as: multi-criteria decision making, image segmentation, medical diagnosis, fault diagnosis, clustering data, neutrosophic probability, human resource management, strategic planning, forecasting model, multi-granulation, supplier selection problems, typhoon disaster evaluation, skin lesson detection, mining algorithm for big data analysis, etc.
The papers collected in this volume focus on new perspectives on individuals, society, and science, specifically in the field of socio-economic systems. The book is the result of a scientific collaboration among experts from “Alexandru Ioan Cuza” University of Iaşi (Romania), “G. d’Annunzio” University of Chieti-Pescara (Italy), "University of Defence" of Brno (Czech Republic), and "Pablo de Olavide" University of Sevilla (Spain). The heterogeneity of the contributions presented in this volume reflects the variety and complexity of social phenomena. The book is divided in four Sections as follows. The first Section deals with recent trends in social decisions. Specifically, it aims to understand which are the driving forces of social decisions. The second Section focuses on the social and public sphere. Indeed, it is oriented on recent developments in social systems and control. Trends in quantitative theories and models are described in Section 3, where many new formal, mathematical-statistical tools for modelling complex social phenomena are presented. Finally, Section 4 shows integrative theories and models; particularly, it deals with the ethical, cultural and political approaches to social science, the pedagogical methods, and the relationship between literature, politics, religion and society. The book is addressed to sociologists, philosophers, mathematicians, statisticians, people interested in ethics, and specialists in the fields of communication, social, and political sciences.
This book is a collection of 12 innovative research papers in the field of hypercompositional algebra, 7 of them being more theoretically oriented, with the other 5 presenting strong applicative aspects in engineering, control theory, artificial intelligence, and graph theory. Hypercompositional algebra is now a well-established branch of abstract algebra dealing with structures endowed with multi-valued operations, also called hyperoperations, having a set as the result of the interrelation between two elements of the support set. The theoretical papers in this book are principally related to three main topics: (semi)hypergroups, hyperfields, and BCK-algebra. Heidari and Cristea present a natural generalization of breakable semigroups, defining the breakable semihypergroups where every non-empty subset is a subsemihypergroup. Using the fundamental relation β on a hypergroup, some new properties of the β-classes are obtained by De Salvo et al., who introduced and investigated the notion of height of a β-class. Based on the properties of a cyclic hypergroup of particular matrices, Krehlik and Vyroubalova describe the symmetry of lower and upper approximations in certain rough sets connected with this hypergroup. These results suggest an application to the study of detection sensors. In the framework of hyperrings and hyperfields theory, a new line of research has been developed regarding hyperhomographies on Krasner hyperfields, with interesting applications in cryptography (Vahedi et al.) and new fuzzy weak hyperideals were defined in Hv-rings by using the concept of fuzzy multiset (Al Tahan et al.), for which some algebraic properties were obtained. Two articles are dedicated to the study of BCK-algebras. Bordbar et al. present the properties of the relative annihilator in lower BCK-semilattices, whereas several types of intuitionistic fuzzy soft ideals in hyper BCK-algebras were defined and studied by Xin et al. Increasing numbers of researchers are interested in the applicative aspects of algebraic hypercompositional structures. For example, new properties related with symmetric relations are emphasized by Chvalina and Smetana for the structures and hyperstructures of artificial neurons. Novak et al. present a mathematical model based on elements of algebraic hyperstructure theory, used in the context of underwater wireless sensor networks. A construction of granular structures using m-polar fuzzy hypergraphs and level hypergraphs is illustrated in Luqman et al. using examples from a real-life problem. In the last paper in this book, Akram et al. discuss some properties related to edge regularity for q-rung picture fuzzy graphs.
In this paper we introduced the notions of neutrosophic (strong, weak, s-weak) hyper BCK-ideal and reflexive neutrosophic hyper BCK-ideal. Some relevant properties and their relations are indicated. Characterization of neutrosophic (weak) hyper BCK-ideal is considered.