Download Free Applications Of High Temperature Superconductors To Electric Power Equipment Book in PDF and EPUB Free Download. You can read online Applications Of High Temperature Superconductors To Electric Power Equipment and write the review.

The only one-stop reference to design, analysis, and manufacturing concepts for power devices utilizing HTS. High temperature superconductors (HTS) have been used for building many devices for electric grids worldwide and for large ship propulsion motors for the U.S. Navy. And yet, there has been no single source discussing theory and design issues relating to power applications of HTS—until now. This book provides design and analysis for various devices and includes examples of devices built over the last decade. Starting with a complete overview of HTS, the subsequent chapters are dedicated to specific devices: cooling and thermal insulation systems; rotating AC and DC machines; transformers; fault current limiters; power cables; and Maglev transport. As applicable, each chapter provides a history of the device, principles, configuration, design and design challenges, prototypes, and manufacturing issues, with each ending with a summary of the material covered. The design analysis and design examples provide critical insight for readers to successfully design their own devices. Original equipment manufacturer (OEM) designers, industry and utilities users, universities and defense services research groups, and senior/postgraduate engineering students and instructors will rely on this resource. "HTS technology reduces electric losses and increases the efficiency of power equipment. This book by Swarn Kalsi, a leading expert on the HTS subject, provides a survey of the HTS technology and the design rules, performance analyses, and manufacturing concepts for power application-related devices. It compares conventional and HTS technology approaches for device design and provides significant examples of devices utilizing the HTS technology today. The book is useful for a broad spectrum of professionals worldwide: students, teaching staff, and OEM designers as well as users in industry and electric utilities." —Professor Dr. Rolf Hellinger, Research and Technologies Corporate Technology, Siemens AG
This report evaluates the potential of high-temperature superconducting (HTS) power technologies to address existing problems with the U.S. electric power transmission grid, especially problems with transmission constraints. These constraints that have resulted from the slow growth of transmission systems relative to the growth in demand for power have played a major role in higher electricity prices and reduced reliability in a number of areas across the United States in recent years. Electric power components using superconducting materials have the potential to address these transmission constraints because they have much higher energy density than conventional power equipment, which for transmission means added power-carrying capacity. Superconducting power equipment requires cooling to sustain operating temperatures hundreds of degrees below ambient temperature. Magnets based on low-temperature superconducting (LTS) materials that require cooling with liquid or gaseous helium have become commercial products for accelerator and magnetic resonance imaging applications. However, the cost of cooling these LTS materials is a substantial barrier to their use in power system components. HTS power equipment, on the other hand, can be cooled with liquid nitrogen which is considerably cheaper than liquid or gaseous helium, thereby reducing or eliminating this cost barrier.
This Golden Jubilee volume in the world's foremost series on superconductivity covers wide-ranging topics capturing the current excitement in the field. The broad areas include the advancement of high Tc theory, materials depicting unusual characteristics, materials' processing and defect structures for improved properties, their electromagnetic response, flux pinning, Josephson junctions and devices, and large scale applications.
This work presents the development and application of high-speed fluorescent thermal imaging for quench analysis in high-temperature superconductors (HTS). Using a fluorescent coating, with a temperature-dependent light emission, temperature changes can be calculated over 2D surfaces. The technique uncovered peculiar transient effects in novel HTS tape architectures and also helped to verify and better understand hot spot development in both insulated and non-insulated, HTS–wound pancake coils.
This essential reference provides the most comprehensive presentation of state-of-the-art research being conducting worldwide today in this growing field of research and applications. HTS are currently being supported by numerous governmental and industrial initiatives in the USA and Asia and Europe to overcome energy distribution issues and are now being commercialised for power-delivery devices, such as power transmission lines and cables, motors, and generators. Applications in electric utilities include energy-storing devices to help industries avoid dips in electric power, current limiters, and long transmission lines. The technology is particularly thought out for highly-populated and densed areas. Both editors are leading experts in the field from the National Renewable Energy Laboratory and the Oak Ridge National Laboratory. This book can be used as a companion teaching tool, and also as as a research and professional reference.
Electric Aircraft Dynamics: A Systems Engineering Approach surveys engineering sciences that underpin the dynamics, control, monitoring, and design of electric propulsion systems for aircraft. It is structured to appeal to readers with a science and engineering background and is modular in format. The closely linked chapters present descriptive material and relevant mathematical modeling techniques. Taken as a whole, this ground-breaking text equips professional and student readers with a solid foundation for advanced work in this emerging field. Key Features: Provides the first systems-based overview of this emerging aerospace technology Surveys low-weight battery technologies and their use in electric aircraft propulsion Explores the design and use of plasma actuation for boundary layer and flow control Considers the integrated design of electric motor-driven propellers Includes PowerPoint slides for instructors using the text for classes Dr. Ranjan Vepa earned his PhD in applied mechanics from Stanford University, California. He currently serves as a lecturer in the School of Engineering and Material Science, Queen Mary University of London, where he has also been the programme director of the Avionics Programme since 2001. Dr. Vepa is a member of the Royal Aeronautical Society, London; the Institution of Electrical and Electronic Engineers (IEEE), New York; a Fellow of the Higher Education Academy; a member of the Royal Institute of Navigation, London; and a chartered engineer.
Wind turbine gearboxes present major reliability issues, leading to great interest in the current development of gearless direct-drive wind energy systems. Offering high reliability, high efficiency and low maintenance, developments in these direct-drive systems point the way to the next generation of wind power, and Electrical drives for direct drive renewable energy systems is an authoritative guide to their design, development and operation. Part one outlines electrical drive technology, beginning with an overview of electrical generators for direct drive systems. Principles of electrical design for permanent magnet generators are discussed, followed by electrical, thermal and structural generator design and systems integration. A review of power electronic converter technology and power electronic converter systems for direct drive renewable energy applications is then conducted. Part two then focuses on wind and marine applications, beginning with a commercial overview of wind turbine drive systems and an introduction to direct drive wave energy conversion systems. The commercial application of these technologies is investigated via case studies on the permanent magnet direct drive generator in the Zephyros wind turbine, and the Archimedes Wave Swing (AWS) direct drive wave energy pilot plant. Finally, the book concludes by exploring the application of high-temperature superconducting machines to direct drive renewable energy systems. With its distinguished editors and international team of expert contributors, Electrical drives for direct drive renewable energy systems provides a comprehensive review of key technologies for anyone involved with or interested in the design, construction, operation, development and optimisation of direct drive wind and marine energy systems. An authorative guide to the design, development and operation of gearless direct drives Discusses the principles of electrical design for permanent magnet generators and electrical, thermal and structural generator design and systems integration Investigates the commercial applications of wind turbine drive systems
The authors begin this book with a systematic overview of superconductivity, superconducting materials, magnetic levitation, and superconducting magnetic levitation - the prerequisites to understand the latter part of the book - that forms a solid foundation for further study in High Temperature Superconducting Magnetic Levitation (HTS Maglev). This book presents our research progress on HTS Maglev at Applied Superconductivity Laboratory (ASCLab) of Southwest Jiaotong University (SWJTU), China, with an emphasis on the findings that led to the world‘s first manned HTS Maglev test vehicle "Century". The book provides a detailed description on our previous work at ASCLab including the designing of the HTS Maglev test and measurement method as well as the apparatus, building "Century", developing the HTS Maglev numerical simulation system, and making new progress on HTS Maglev. The final parts of this book discuss research and prototyping efforts at ASCLab in several adjacent fi elds including HTS Maglev bearing, Flywheel Energy Storage System (FESS) and HTS maglev launch technology. We hope this book becomes a valuable source for researchers and engineers working in the fascinating field of HTS Maglev science and engineering. Contents Fundamentals of superconductivity Superconducting materials Magnetic levitation Superconducting magnetic levitation HTS Maglev experimental methods and set-up First manned HTS Maglev vehicle in the world Numerical simulations of HTS Maglev New progress of HTS Maglev vehicle HTS Maglev bearing and flywheel energy storage system HTS Maglev launch technology
This book presents novel concepts in the development of high-temperature superconducting (HTS) devices and discusses the technologies involved in producing efficient and economically feasible energy technologies around the world. High-Temperature Superconducting Devices for Energy Application covers the application of high-temperature superconductors in clean energy production and allied cooling technologies. In addition, it presents the compatibility of other materials involved in the construction of various devices at cryogenic temperatures. It also summarizes superconducting fault current limiters (SFCL) and related grid stabilization. The book addresses the need to lower the losses incurred with efficient power transmission. The aim of this book is to serve the needs of industry professionals, researchers, and doctoral students studying energy technologies. Features Discusses the history of the development of high-temperature superconductors Covers cryogenic cooling technologies adapted for various superconducting devices Presents a detailed design of superconducting generators Highlights the importance of superconducting magnetic energy storage (SMES) devices in the power grid Focuses on theoretical computations