Download Free Applications Of Geographic Information Systems For Wireless Network Planning Book in PDF and EPUB Free Download. You can read online Applications Of Geographic Information Systems For Wireless Network Planning and write the review.

This practical book shows the procedure to integrate, in a practical way, empirical propagation methods with geographical information systems (GIS) to obtain the radio coverage in open environments. It includes the theoretical explanation of empirical methods and GIS but as a basis to develop a real tool that combines both aspects to provide the user a suitable method for the wireless network planning in urban areas. The book introduces the empirical propagation methods and their application to wireless network planning. The motivation for combining them with the information obtained from geographical information systems is illustrated as well as their application to real situations. The most important empirical methods used to calculate the propagation in open environments are reviewed. Focus is given to the geometrical information needed to prove the necessity of obtaining some geographical information if these methods must be applied to realistic network planning. A review of the most important GIS is also described. The advantages and disadvantages of every system is analyzed from the point of view of its integration with an empirical propagation method. An application that combines a geographical information system with an empirical propagation method is fully described. The practical features of this integration are completely studied to allow an engineer to use and develop his own tool. Examples are given in each chapter to fully describe and illustrate the process.
Developments in technologies have evolved in a much wider use of technology throughout science, government, and business; resulting in the expansion of geographic information systems. GIS is the academic study and practice of presenting geographical data through a system designed to capture, store, analyze, and manage geographic information. Geographic Information Systems: Concepts, Methodologies, Tools, and Applications is a collection of knowledge on the latest advancements and research of geographic information systems. This book aims to be useful for academics and practitioners involved in geographical data.
This updated edition of an Artech House classic contains steering, focusing, and spreading of antenna beams using the physics of refraction of electromagnetic waves through a plasma. Pulsing circuitry for ionizing plasma antennas with low power requirements are covered. New and improved smart plasma antenna and applications to wi-fi and the applications of plasma antennas are discussed. Experimental work on plasma antenna noise and new progress on ruggedization and custom-made plasma tubes are also presented. This unique resource provides readers with a solid understanding of the efficient design and prototype development of plasma antennas to meet the challenge of reducing the power required to ionize the gas at various plasma densities. Thorough coverage of the technical underpinnings of plasma antennas, as well as important discussions on current markets and applications are discussed. Additionally, the book presents experimental work in this cutting-edge area and reveals the latest developments in the field.
This book provides practical and theoretical aspects for automotive antenna measurements. It comprehensively covers all the information you need to design, develop, place, and use antennas and antenna systems in automotive applications. Special chapters are devoted to some of the most advanced topics in this area, including OTA measurements for Vehicle to Everything (V2X) applications, emulation of virtual drive testing, and specific topics for measurements of automotive RADAR systems. You will understand the various measurement techniques specifically for automotive antennas, including chamber design, absorbers, near-to-far field transformation, and some of the newest techniques such as the use of drones. The book presents both well accepted and standard practices and includes innovative methods that help you quickly adapt to the rapidly evolving field of automotive antenna testing today. This is an excellent reference for antenna engineers, automotive system designers, and anyone who measures and designs antennas for automotive applications.
Geographic Information Systems: Concepts, Methodologies, Tools, and Applications is a collection of knowledge on the latest advancements and research of geographic information systems. This book aims to be useful for academics and practitioners involved in geographical data.
We need to understand how to utilize Geospatial Research in order to help us solve problems in environmental, life science, and defense industries, as well as intelligence, natural resources, medical and public safety industries. Emerging Methods and Multidisciplinary Applications in Geospatial Research exemplifies the usage of geographic information science and technology (GIS&T) to explore and resolve geographical issues from various application domains within the social and/or physical sciences. It specializes in studies from applied geography that interfaces with geographic information science and technology. This publication is designed to provide planners and policy analysts, practitioners, academicians, and others using GIS&T useful studies that might support decision-making activities.
This book provides a comprehensive overview of the latest trends in Internet of Things (IoT) antenna design. IoT is a rapidly growing network of interconnected devices that can collect and exchange data. This data can be used to improve efficiency, safety, and productivity in many applications, including smart cities, grids, industrial internet, computer security, etc. One of the main components of the IoT is the antenna. Antennas are responsible for transmitting and receiving the data that flows between IoT devices. To be effective, IoT antennas must be small, light, and easy to integrate into devices. They must also be able to operate in various environments, including those with elevated interference levels. This resource covers a wide range of topics, including the challenges and opportunities involved in designing antennas for IoT applications and the importance of miniaturization in IoT antenna design. A comprehensive list of references is included, making it a valuable resource for further study. This is an essential resource for engineers, researchers, and anyone who wants to learn more about the latest trends in IoT antenna design.
"This 4-volume set provides a compendium of comprehensive advanced research articles written by an international collaboration of experts involved with the strategic use of information systems"--Provided by publisher.
"This book provides a comprehensive treatment of collaborative GIS focusing on system design, group spatial planning and mapping; modeling, decision support, and visualization; and internet and wireless applications"--Provided by publisher.
This second edition includes updated chapters from the first edition as well as five additional new chapters (Light detection and ranging (LiDAR), CORONA historical de-classified products, Unmanned Aircraft Vehicles (UAVs), GNSS-reflectometry and GNSS applications to climate variability), shifting the main focus from monitoring and management to extreme hydro-climatic and food security challenges and exploiting big data. Since the publication of first edition, much has changed in terms of technology, and the demand for geospatial data has increased with the advent of the big data era. For instance, the use of laser scanning has advanced so much that it is unavoidable in most environmental monitoring tasks, whereas unmanned aircraft vehicles (UAVs)/drones are emerging as efficient tools that address food security issues as well as many other contemporary challenges. Furthermore, global navigation satellite systems (GNSS) are now responding to challenges posed by climate change by unravelling the impacts of teleconnection (e.g., ENSO) as well as advancing the use of reflected signals (GNSS-reflectometry) to monitor, e.g., soil moisture variations. Indeed all these rely on the explosive use of “big data” in many fields of human endeavour. Moreover, with the ever-increasing global population, intense pressure is being exerted on the Earth’s resources, leading to significant changes in its land cover (e.g., deforestation), diminishing biodiversity and natural habitats, dwindling fresh water supplies, and changing weather and climatic patterns (e.g., global warming, changing sea level). Environmental monitoring techniques that provide information on these are under scrutiny from an increasingly environmentally conscious society that demands the efficient delivery of such information at a minimal cost. Environmental changes vary both spatially and temporally, thereby putting pressure on traditional methods of data acquisition, some of which are highly labour intensive, such as animal tracking for conservation purposes. With these challenges, conventional monitoring techniques, particularly those that record spatial changes call for more sophisticated approaches that deliver the necessary information at an affordable cost. One direction being pursued in the development of such techniques involves environmental geoinformatics, which can act as a stand-alone method or complement traditional methods.