Download Free Applications Of Elasticity In Geomechanics Book in PDF and EPUB Free Download. You can read online Applications Of Elasticity In Geomechanics and write the review.

A concise examination of the use of elasticity in solving geotechnical engineering problems.
Plasticity and Geomechanics is a concise introduction to the general subject of plasticity with a particular emphasis on applications in geomechanics. Derived from the authors' lecture notes, this book is written with students firmly in mind. Excessive use of mathematical methods is avoided and, where possible, physical interpretations are given for important concepts. The authors present a clear introduction to the complex ideas and concepts of plasticity and demonstrate how this developing subject is of critical importance to geomechanics and geotechnical engineering.
This monograph is based on subsurface hydrodynamics and applied geomechanics and places them in a unifying framework. It focuses on the understanding of physical and mechanical properties of geomaterials by presenting mathematical models of deformation and fracture with related experiments.
The theory of linear poroelasticity describes the interaction between mechanical effects and adding or removing fluid from rock. It is critical to the study of such geological phenomena as earthquakes and landslides and is important for numerous engineering projects, including dams, groundwater withdrawal, and petroleum extraction. Now an advanced text synthesizes in one place, with one notation, numerous classical solutions and applications of this highly useful theory. The introductory chapter recounts parallel developments in geomechanics, hydrogeology, and reservoir engineering that are unified by the tenets of poroelasticity. Next, the theory's constitutive and governing equations and their associated material parameters are described. These equations are then specialized for different simplifying geometries: unbounded problem domains, uniaxial strain, plane strain, radial symmetry, and axisymmetry. Example problems from geomechanics, hydrogeology, and petroleum engineering are incorporated throughout to illustrate poroelastic behavior and solution methods for a wide variety of real-world scenarios. The final chapter provides outlines for finite-element and boundary-element formulations of the field's governing equations. Whether read as a course of study or consulted as a reference by researchers and professionals, this volume's user-friendly presentation makes accessible one of geophysics' most important subjects and will do much to reduce poroelasticity's reputation as difficult to master.
A full account of thermo-poroelasticity and thermo-poromechanics with derivations to problems, for both experienced and novice researchers.
Although there are several books in print dealing with elasticity, many focus on specialized topics such as mathematical foundations, anisotropic materials, two-dimensional problems, thermoelasticity, non-linear theory, etc. As such they are not appropriate candidates for a general textbook. This book provides a concise and organized presentation and development of general theory of elasticity. This text is an excellent book teaching guide. - Contains exercises for student engagement as well as the integration and use of MATLAB Software - Provides development of common solution methodologies and a systematic review of analytical solutions useful in applications of
Geomechanics is the mechanics of geomaterials, i.e. soils and rocks, and deals with fascinating problems such as settlements, stability of excavations, tunnels and offshore platforms, landslides, earthquakes and liquefaction. This edited book presents recent mathematical and computational tools and models to describe and simulate such problems in Geomechanics and Geotechnical Engineering. It includes a collection of contributions emanating from the three Euroconferences GeoMath ("Mathematical Methods in Geomechanics") that were held between 2000 and 2002 in Innsbruck/Austria and Horto/Greece.
A comprehensive overview of the key geologic, geomechanical and engineering principles that govern the development of unconventional oil and gas reservoirs. Covering hydrocarbon-bearing formations, horizontal drilling, reservoir seismology and environmental impacts, this is an invaluable resource for geologists, geophysicists and reservoir engineers.
The development of constitutive relations for geotechnical materials, with the help of numerical models, have increased notably the ability to predict and to interpret mechanical behaviour of geotechnical works. These proceedings cover the applications of computational mechanics in this area.
A multidisciplinary field, encompassing both geophysics and civil engineering, geomechanics deals with the deformation and failure process in geomaterials such as soil and rock. Although powerful numerical tools have been developed, analytical solutions still play an important role in solving practical problems in this area. Analytic Methods in Geomechanics provides a much-needed text on mathematical theory in geomechanics, beneficial for readers of varied backgrounds entering this field. Written for scientists and engineers who have had some exposure to engineering mathematics and strength of materials, the text covers major topics in tensor analysis, 2-D elasticity, and 3-D elasticity, plasticity, fracture mechanics, and viscoelasticity. It also discusses the use of displacement functions in poroelasticity, the basics of wave propagations, and dynamics that are relevant to the modeling of geomaterials. The book presents both the fundamentals and more advanced content for understanding the latest research results and applying them to practical problems in geomechanics. The author gives concise explanations of each subject area, using a step-by-step process with many worked examples. He strikes a balance between breadth of material and depth of details, and includes recommended reading in each chapter for readers who would like additional technical information. This text is suitable for students at both undergraduate and graduate levels, as well as for professionals and researchers.