Download Free Applications Of Beta Ray Spectroscopy Book in PDF and EPUB Free Download. You can read online Applications Of Beta Ray Spectroscopy and write the review.

Alpha-, Beta- and Gamma-Ray Spectroscopy Volume 1 offers a comprehensive account of radioactivity and related low-energy phenomena. It summarizes progress in the field of alpha-, beta- and gamma-ray spectroscopy, including the discovery of the non-conservation of parity, as well as new experimental methods that elucidate the processes of weak interactions in general and beta-decay in particular. Comprised of 14 chapters, the book presents experimental methods and theoretical discussions and calculations to maintain the link between experiment and theory. It begins with a discussion of the interaction of electrons and alpha particles with matter. The book explains the elastic scattering of electrons by atomic nuclei and the interaction between gamma-radiation and matter. It then introduces topic on beta-ray spectrometer theory and design and crystal diffraction spectroscopy of nuclear gamma rays. Moreover, the book discusses the applications of the scintillation counter; proportional counting in gases; and the general processes and procedures used in determining disintegration schemes through a study of the beta- and gamma-rays emitted. In addition, it covers the nuclear shell model; collective nuclear motion and the unified model; and alpha-decay conservation laws. The emissions of gamma-radiation during charged particle bombardment and from fission fragments, as well as the neutron-capture radiation spectroscopy, are also explained. Experimentalists will find this book extremely useful.
Comprehensive overview of the spectroscopic, mineralogical, and geochemical techniques used in planetary remote sensing.
Gamma-rays originate from the decay of excited states of the atomic nuclei in a similar manner as the visible light originates from the decay of the atom itself. Gamma rays belong to the class of ionizing radiation, together with alpha rays (doubly ionized atoms of helium) and beta rays (electrons). The spectroscopy of gamma rays, having the unique feature that by photo-effect transform their total energy to the energy of electrons in the detection material, contributed decisively to the establishing of the decay schemes of atomic nuclei. Strong sources of gamma radiation are widely used in contemporary technologies for cancer treatment, material modification, medical imaging, and food sterilization. The main goal of this book is to present to the non-specialist reader the contemporary applications of gamma rays by selected chapters on that issue. This book has 16 selected chapters from basic application of gamma rays to applied issues like food sterilization and polymer modification.
Handbook of Radioactivity Analysis is written by experts in the measurement of radioactivity. The book describes the broad scope of analytical methods available and instructs the reader on how to select the proper technique. It is intended as a practical manual for research which requires the accurate measurement of radioactivity at all levels, from the low levels encountered in the environment to the high levels measured in radioisotope research. This book contains sample preparation procedures, recommendations on steps to follow, necessary calculations, computer controlled analysis, and high sample throughput techniques. Each chapter includes practical techniques for application to nuclear safety, nuclear safeguards, environmental analysis, weapons disarmament, and assays required for research in biomedicine and agriculture. The fundamentals of radioactivity properties, radionuclide decay, and methods of detection are included to provide the basis for a thorough understanding of the analytical procedures described in the book. Therefore, the Handbook can also be used as a teaching text. - Includes sample preparation techniques for matrices such as soil, air, plant, water, animal tissue, and surface swipes - Provides procedures and guidelines for the analysis of commonly encountered na
X-Ray Absorption and X-ray Emission Spectroscopy: Theory and Applications During the last two decades, remarkable and often spectacular progress has been made in the methodological and instrumental aspects of x-ray absorption and emission spectroscopy. This progress includes considerable technological improvements in the design and production of detectors especially with the development and expansion of large-scale synchrotron reactors All this has resulted in improved analytical performance and new applications, as well as in the perspective of a dramatic enhancement in the potential of x-ray based analysis techniques for the near future. This comprehensive two-volume treatise features articles that explain the phenomena and describe examples of X-ray absorption and emission applications in several fields, including chemistry, biochemistry, catalysis, amorphous and liquid systems, synchrotron radiation, and surface phenomena. Contributors explain the underlying theory, how to set up X-ray absorption experiments, and how to analyze the details of the resulting spectra. X-Ray Absorption and X-ray Emission Spectroscopy: Theory and Applications: Combines the theory, instrumentation and applications of x-ray absorption and emission spectroscopies which offer unique diagnostics to study almost any object in the Universe. Is the go-to reference book in the subject for all researchers across multi-disciplines since intense beams from modern sources have revolutionized x-ray science in recent years Is relevant to students, postdocurates and researchers working on x-rays and related synchrotron sources and applications in materials, physics, medicine, environment/geology, and biomedical materials
This book is aimed at scientists and engineers wanting to use radioisotopes and the emitted ionising radiations competently but without seeking expertise. It describes decay and stability criteria, necessary precautions to ensure radiation protection and the detection of alpha, beta and gamma rays including spectrometry. There are comments on calorimetry, liquid scintillation counting, how to use secondary standard instruments, high resolution detectors and how to calculate counting results estimating uncertainties and allowing for the statistics of radionuclide decays. The book's principal purpose is to encourage radionuclide applications which can be done safely, reliably and accurately. It describes industrial and scientific applications of alpha, beta, and gamma rays, neutrons and high energy radiations. This book will be of particular interest to scientists and technologists, teachers and students, helping them to work with radioisotopes safely, efficiently and reliably.
The use of a beta-ray spectrometer, in the analysis of nuclear decay schemes, makes possible the solution of many of the problems which arise in the course of such analyses. Of particular interest is the application of the instrument to the determination of the energy of beta and gamma-radiation from radioactive isotopes. In addition, it is possible to use the instrument to estimate the relative intensities of the various components of radiation; and to apply the coincidence method, in conjunction with the spectrometer, to the determination of the order in which these components are emitted from the nucleus. The present work was concerned with three particular problems arising in beta-ray spectrometry. A method of improving the intensity-resolution relationship of a thin lens magnetic beta-ray spectrometer, by means of ring focusing, was investigated. The existence of a ring-shaped constriction in the electron beam was demonstrated experimentally by a photographic film method. A theoretical analysis was carried out in an attempt to determine relations from which the relative intensities of beta-rays, gamma-rays and internal conversion electrons might be determined from data obtained with the spectrometer. Simplifying assumptions were made concerning the focusing action of the instrument, and effects due to scattering of electrons in the source of photoelectric radiator were neglected. Formulae were derived from which the observed spectrometer counting rates due to sources of known activity, emitting beta-rays, gamma-rays or internal conversion electrons may be predicted.
Radiation detection is key to experimental nuclear physics as well as underpinning a wide range of applications in nuclear decommissioning, homeland security and medical imaging. This book presents the state-of-the-art in radiation detection of light and heavy ions, beta particles, gamma rays and neutrons. The underpinning physics of different detector technologies is presented, and their performance is compared and contrasted. Detector technology likely to be encountered in contemporary international laboratories is also emphasized. There is a strong focus on experimental design and mapping detector technology to the needs of a particular measurement problem. This book will be invaluable to PhD students in experimental nuclear physics and nuclear technology, as well as undergraduate students encountering projects based on radiation detection for the first time. Key Features Provides clear, concise descriptions of key detection techniques Describes detector types with "telescopic depth", so readers can go as deep as they wish Covers real-world applications including short case studies in industry