Download Free Applications And Efficiency Of Heat Pump Systems Book in PDF and EPUB Free Download. You can read online Applications And Efficiency Of Heat Pump Systems and write the review.

The papers in this collection have originated from Britain, Eastern and Western Europe and India, with the delegates coming from fifteen countries, including a strong contingent from Japan. This indicates a widespread interest in the application of heat pumps. The heat pump suffers from an environmental dichotomy. On the one hand it saves fossil fuel energy, thereby reducing CO emissions. On the other hand, in the vapour compression form, 2 it generally employs CFCs which are destructive to our protective ozone layer as well as contributing to the greenhouse effect. Taking the first, heat pumps, perhaps have the widest application numerically in the heating (and cooling) of buildings and an excellent paper describes case studies concerning three large Norwegian hotels. In these, heat was pumped from the adjacent river or sea when heating was required, and during the summer, when cooling became necessary, to generate domestic hot water. The heat pumps were installed by SINTEF Refrigeration Engineering, Norway, and have demonstrated payback periods of about two years. The fractional total energy saving of the three hotels was 30% as a result, an impressive figure, indeed. A similar paper by a Belgian architectural consortium shows how this technique can be successfully applied to the cooling of a large television complex where considerable quantities of heat were being generated by the luminaries. In this exercise the cooling load was successfully pumped to provide hot water.
The text describes the main features of currently available heat pumps, focusing on system operation and interactions with external heat sources. In fact, before choosing a heat pump, several aspects must be assessed in detail: the actual climate of the installation site, the building’s energy requirements, the heating system, the type of operation etc. After discussing the general working principles, the book describes the main components of compression machines – for EHPs, GHPs and CO2 heat pumps. It then addresses absorption heat pumps and provides additional details on the behavior of two-fluid mixtures. The book presents a performance comparison for the different types, helping designers choose the right one for their needs, and discusses the main refrigerants. Notes on helpful additional literature, websites and videos, also concerning relevant European regulations, round out the coverage. This book will be of interest to all engineers and technicians whose work involves heat pumps. It will also benefit students in energy engineering degree programs who want to deepen their understanding of heat pumps.
Low-Temperature Energy Systems with Applications of Renewable Energy investigates a wide variety of low-temperature energy applications in residential, commercial, institutional, and industrial areas. It addresses the basic principles that form the groundwork for more efficient energy conversion processes and includes detailed practical methods for carrying out these critical processes. This work considers new directions in the engineering use of technical thermodynamics and energy, including more in-depth studies of the use of renewable sources, and includes worked numerical examples, review questions, and practice problems to allow readers to test their own comprehension of the material. With detailed explanations, methods, models, and algorithms, Low-Temperature Energy Systems with Applications of Renewable Energy is a valuable reference for engineers and scientists in the field of renewable energy, as well as energy researchers and academics. - Features end-of chapter review sections with questions and exercises for practical study and utilization. - Presents methods for a great variety of energy applications to improve their energy operations. - Applies real-world data to demonstrate the impact of low-temperature energy systems on renewable energy use today.
Improve and optimize efficiency of HVAC and related energy systems from an exergy perspective. From fundamentals to advanced applications, Exergy Analysis of Heating, Air Conditioning, and Refrigeration provides readers with a clear and concise description of exergy analysis and its many uses. Focusing on the application of exergy methods to the primary technologies for heating, refrigerating, and air conditioning, Ibrahim Dincer and Marc A. Rosen demonstrate exactly how exergy can help improve and optimize efficiency, environmental performance, and cost-effectiveness. The book also discusses the analysis tools available, and includes many comprehensive case studies on current and emerging systems and technologies for real-world examples. From introducing exergy and thermodynamic fundamentals to presenting the use of exergy methods for heating, refrigeration, and air conditioning systems, this book equips any researcher or practicing engineer with the tools needed to learn and master the application of exergy analysis to these systems. - Explains the fundamentals of energy/exergy for practitioners/researchers in HVAC&R fields for improving efficiency - Covers environmental assessments and economic evaluations for a well-rounded approach to the subject - Includes comprehensive case studies on both current and emerging systems/technologies - Provides examples from a range of applications – from basic HVAC&R to more diverse processes such as industrial heating/cooling, cogeneration and trigeneration, and thermal storage
Advances in Ground-Source Heat Pump Systems relates the latest information on source heat pumps (GSHPs), the types of heating and/or cooling systems that transfer heat from, or to, the ground, or, less commonly, a body of water. As one of the fastest growing renewable energy technologies, they are amongst the most energy efficient systems for space heating, cooling, and hot water production, with significant potential for a reduction in building carbon emissions. The book provides an authoritative overview of developments in closed loop GSHP systems, surface water, open loop systems, and related thermal energy storage systems, addressing the different technologies and component methods of analysis and optimization, among other subjects. Chapters on building integration and hybrid systems complete the volume. - Provides the geological aspects and building integration covered together in one convenient volume - Includes chapters on hybrid systems - Presents carefully selected chapters that cover areas in which there is significant ongoing research - Addresses geothermal heat pumps in both heating and cooling modes
Refrigeration, Air Conditioning and Heat Pumps, Fifth Edition, provides a comprehensive introduction to the principles and practice of refrigeration. Clear and comprehensive, it is suitable for both trainee and professional HVAC engineers, with a straightforward approach that also helps inexperienced readers gain a comprehensive introduction to the fundamentals of the technology. With its concise style and broad scope, the book covers most of the equipment and applications professionals will encounter. The simplicity of the descriptions helps users understand, specify, commission, use, and maintain these systems. It is a must-have text for anyone who needs thorough, foundational information on refrigeration and air conditioning, but without textbook pedagogy. It includes detailed technicalities or product-specific information. New material to this edition includes the latest developments in refrigerants and lubricants, together with updated information on compressors, heat exchangers, liquid chillers, electronic expansion valves, controls, and cold storage. In addition, efficiency, environmental impact, split systems, retail refrigeration (supermarket systems and cold rooms), industrial systems, fans, air infiltration, and noise are also included. - Full theoretical and practical treatment of current issues and trends in refrigeration and air conditioning technology - Meets the needs of industry practitioners and system designers who need a rigorous, but accessible reference to the latest developments in refrigeration and AC that is supported by coverage at a level not found in typical course textbooks - New edition features updated content on refrigerants, microchannel technology, noise, condensers, data centers, and electronic control
Begins with a general description of heat pumps and how they work, their terminology, and their standards. This is followed by details on air- and ground-source heat pumps, including their operation, components, energy efficiency considerations, sizing and design considerations, installation, benefits, maintenance, operating costs, and life expectancy. Heating energy costs are then compared for heat pump and electric heating systems at various locations in Canada. Related equipment such as supplementary heating systems, thermostats, and heat distribution systems is also reviewed. Finally, answers are provided to some commonly asked questions about heat pumps.
Heat pumps (HPs) allow for providing heat without direct combustion, in both civil and industrial applications. They are very efficient systems that, by exploiting electrical energy, greatly reduce local environmental pollution and CO2 global emissions. The fact that electricity is a partially renewable resource and because the coefficient of performance (COP) can be as high as four or more, means that HPs can be nearly carbon neutral for a full sustainable future. The proper selection of the heat source and the correct design of the heat exchangers is crucial for attaining high HP efficiencies. Heat exchangers (also in terms of HP control strategies) are hence one of the main elements of HPs, and improving their performance enhances the effectiveness of the whole system. Both the heat transfer and pressure drop have to be taken into account for the correct sizing, especially in the case of mini- and micro-geometries, for which traditional models and correlations can not be applied. New models and measurements are required for best HPs system design, including optimization strategies for energy exploitation, temperature control, and mechanical reliability. Thus, a multidisciplinary approach of the analysis is requested and become the future challenge.
This handbook provides a comprehensive summary on the energy systems used in green buildings, with a particular focus on solar energy - the most common renewable energy source applied in this field. With the growing concern about environmental protections, the concepts of green building have been widely promoted and implemented in nowadays building designs and constructions. Among all, sustainable energy systems, including energy harvesting, conversion, and storage, is one of most important design factors in green buildings. Unlike traditional energy systems which highly rely on fossil fuel, green buildings utilize renewable energy source or high efficient energy systems, or both, to provide environmental friendly, low carbon waste energy. The most updated concepts, designs, technologies developed and implemented in heat pumps, cooling systems, power systems, and energy storage will be discussed here in details. This handbook is subdivided into 7-9 main sections to provide an in-depth discussion from foundational principles to practical techniques. In addition, different cases about green energy systems implemented in global will be discussed. The book will be structured easy-to-read, to make it more accessible to graduate students and professionals in diverse scientific and engineering communities, including applied physics, civil engineering, electrical engineering, mechanical engineering, material engineering, and chemical engineering.
An essential resource for optimizing energy systems to enhance design capability, performance and sustainability Optimization of Energy Systems comprehensively describes the thermodynamic modelling, analysis and optimization of numerous types of energy systems in various applications. It provides a new understanding of the system and the process of defining proper objective functions for determination of the most suitable design parameters for achieving enhanced efficiency, cost effectiveness and sustainability. Beginning with a general summary of thermodynamics, optimization techniques and optimization methods for thermal components, the book goes on to describe how to determine the most appropriate design parameters for more complex energy systems using various optimization methods. The results of each chapter provide potential tools for design, analysis, performance improvement, and greenhouse gas emissions reduction. Key features: Comprehensive coverage of the modelling, analysis and optimization of many energy systems for a variety of applications. Examples, practical applications and case studies to put theory into practice. Study problems at the end of each chapter that foster critical thinking and skill development. Written in an easy-to-follow style, starting with simple systems and moving to advanced energy systems and their complexities. A unique resource for understanding cutting-edge research in the thermodynamic analysis and optimization of a wide range of energy systems, Optimization of Energy Systems is suitable for graduate and senior undergraduate students, researchers, engineers, practitioners, and scientists in the area of energy systems.