Download Free Application Of Titanium Dioxide Photocatalysis To Construction Materials Book in PDF and EPUB Free Download. You can read online Application Of Titanium Dioxide Photocatalysis To Construction Materials and write the review.

Due to the semiconducting nature of its anatase crystal type, titanium dioxide in construction materials acts as a photocatalyst and exhibits air purifying, self-cleaning and antibacterial action. This book covers the theory and applications of the process.
Titanium dioxide photocatalysis is based on the semiconducting nature of its anatase crystal type. Construction materials with titanium photocatalyst show performances of air purification, self-cleaning, water purification, antibacterial action. This book describes principles of titanium dioxide photocatalysis, its applications to cementitious and noncementitious materials, as well as an overview of standardization of testing methods.
Concrete is widely used because of its versatility, affordability, and availability of raw materials, strength, and durability. Urban development that took place through the world in the last few decades yielded significant developments for concrete technology. The term high-performance concrete (HPC) is relatively new, and it refers to many properties such as strength, durability, sound and heat insulation, waterproofing, and side advantages such as air purification, self-cleaning, etc. Researchers and engineers are constantly working for improving concrete properties. This book provides the state of the art on recent progress in the high-performance concrete applications written by researchers and experts of the field. The book should be useful to graduate students, researchers, and practicing engineers in related fields.
Cement-based materials have been used by humans nearly since the dawn of civilization. The Egyptians used lime and gypsum cement to bind their aggregate materials, mud and straw, resulting in bricks that are used for building their famous Egyptian pyramids (between 3000 and 2500 BC). Hydrated cement is a cement material bonded together with water and used for building construction; it is characterized by acceptable chemical, physical, thermal, mechanical, and structural stability. It plays a main role in the creation of vessels for storage, roads to travel on, weather-resistant structure for protection, inert hard stabilizer for hazardous wastes, and so on. Due to the composition of these materials and their advantages, it has been practiced in different applications. Cement is an essential component of making concrete, the single most prevalent building material used worldwide for construction, skyscrapers, highways, tunnels, bridges, hydraulic dams, and railway ties. Besides their numerous desired properties, there are some undesirable features. To overcome these disadvantages, several studies were established to prepare, improve, and evaluate innovative cement-based materials. Despite its oldness and deep research, every year several methods and materials evolve and so do cement technology. This book intends to provide a comprehensive overview on recent advances in the evaluation of these materials.
As the environmental impact of existing construction and building materials comes under increasing scrutiny, the search for more eco-efficient solutions has intensified. Nanotechnology offers great potential in this area and is already being widely used to great success. Nanotechnology in eco-efficient construction is an authoritative guide to the role of nanotechnology in the development of eco-efficient construction materials and sustainable construction.Following an introduction to the use of nanotechnology in eco-efficient construction materials, part one considers such infrastructural applications as nanoengineered cement-based materials, nanoparticles for high-performance and self-sensing concrete, and the use of nanotechnology to improve the bulk and surface properties of steel for structural applications. Nanoclay-modified asphalt mixtures and safety issues relating to nanomaterials for construction applications are also reviewed before part two goes on to discuss applications for building energy efficiency. Topics explored include thin films and nanostructured coatings, switchable glazing technology and third generation photovoltaic (PV) cells, high-performance thermal insulation materials, and silica nanogel for energy-efficient windows. Finally, photocatalytic applications are the focus of part three, which investigates nanoparticles for pollution control, self-cleaning and photosterilisation, and the role of nanotechnology in manufacturing paints and purifying water for eco-efficient buildings.Nanotechnology in eco-efficient construction is a technical guide for all those involved in the design, production and application of eco-efficient construction materials, including civil engineers, materials scientists, researchers and architects within any field of nanotechnology, eco-efficient materials or the construction industry. - Provides an authoritative guide to the role of nanotechnology in the development of eco-efficient construction materials and sustainable construction - Examines the use of nanotechnology in eco-efficient construction materials - Considers a range of important infrastructural applications, before discussing applications for building energy efficiency
Titanium dioxide photocatalysis is based on the semiconducting nature of its anatase crystal type. Construction materials with titanium photocatalyst show performances of air purification, self-cleaning, water purification, antibacterial action. This book describes principles of titanium dioxide photocatalysis, its applications to cementitious and noncementitious materials, as well as an overview of standardization of testing methods.
Photocatalysis is a hot topic because it is an environmentally friendly approach toward the conversion of light energy into chemical energy at mild reaction environments. Also, it is well applied in several major areas such as water splitting, bacterial inactivation, and pollutants elimination, which is a possible solution to energy shortage and environmental issues. The fundamental knowledge and the frontier research progress in typical photocatalytic materials, such as TiO2-based and non-TiO2-based photocatalysts, are included in this book. Methods to improve the photocatalytic efficiency and to provide a hint for the rational design of the new photocatalysts are covered.
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. The chapter "Mechanochemical Forces as a Synthetic Tool for Zero and One-Dimensional Titanium Oxide-Based Nano-photocatalysts" is available open access under a CC BY 4.0 License via link.springer.com.
Research for the development of more efficient photocatalysts has experienced an almost exponential growth since its popularization in early 1970’s. Despite the advantages of the widely used TiO2, the yield of the conversion of sun power into chemical energy that can be achieved with this material is limited prompting the research and development of a number of structural, morphological and chemical modifications of TiO2 , as well as a number of novel photocatalysts with very different composition. Design of Advanced Photocatalytic Materials for Energy and Environmental Applications provides a systematic account of the current understanding of the relationships between the physicochemical properties of the catalysts and photoactivity. The already long list of photocatalysts phases and their modifications is increasing day by day. By approaching this field from a material sciences angle, an integrated view allows readers to consider the diversity of photocatalysts globally and in connection with other technologies. Design of Advanced Photocatalytic Materials for Energy and Environmental Applications provides a valuable road-map, outlining the common principles lying behind the diversity of materials, but also delimiting the imprecise border between the contrasted results and the most speculative studies. This broad approach makes it ideal for specialist but also for engineers, researchers and students in related fields.