Download Free Application Of Metaheuristics In Scheduling Continuous Semi Continuous Process Industries And A Case Study Book in PDF and EPUB Free Download. You can read online Application Of Metaheuristics In Scheduling Continuous Semi Continuous Process Industries And A Case Study and write the review.

Metaheuristics have been a very active research topic for more than two decades. During this time many new metaheuristic strategies have been devised, they have been experimentally tested and improved on challenging benchmark problems, and they have proven to be important tools for tackling optimization tasks in a large number of practical applications. In other words, metaheuristics are nowadays established as one of the main search paradigms for tackling computationally hard problems. Still, there are a large number of research challenges in the area of metaheuristics. These challenges range from more fundamental questions on theoretical properties and performance guarantees, empirical algorithm analysis, the effective configuration of metaheuristic algorithms, approaches to combine metaheuristics with other algorithmic techniques, towards extending the available techniques to tackle ever more challenging problems. This edited volume grew out of the contributions presented at the ninth Metaheuristics International Conference that was held in Udine, Italy, 25-28 July 2011. The conference comprised 117 presentations of peer-reviewed contributions and 3 invited talks, and it has been attended by 169 delegates. The chapters that are collected in this book exemplify contributions to several of the research directions outlined above.
Understand common scheduling as well as other advanced operational problems with this valuable reference from a recognized leader in the field. Beginning with basic principles and an overview of linear and mixed-integer programming, this unified treatment introduces the fundamental ideas underpinning most modeling approaches, and will allow you to easily develop your own models. With more than 150 figures, the basic concepts and ideas behind the development of different approaches are clearly illustrated. Addresses a wide range of problems arising in diverse industrial sectors, from oil and gas to fine chemicals, and from commodity chemicals to food manufacturing. A perfect resource for engineering and computer science students, researchers working in the area, and industrial practitioners.
This book constitutes the refereed proceedings of the 17th IFIP WG 12.5 International Conference on Artificial Intelligence Applications and Innovations, AIAI 2021, held virtually and in Hersonissos, Crete, Greece, in June 2021. The 50 full papers and 11 short papers presented were carefully reviewed and selected from 113 submissions. They cover a broad range of topics related to technical, legal, and ethical aspects of artificial intelligence systems and their applications and are organized in the following sections: adaptive modeling/ neuroscience; AI in biomedical applications; AI impacts/ big data; automated machine learning; autonomous agents; clustering; convolutional NN; data mining/ word counts; deep learning; fuzzy modeling; hyperdimensional computing; Internet of Things/ Internet of energy; machine learning; multi-agent systems; natural language; recommendation systems; sentiment analysis; and smart blockchain applications/ cybersecurity. Chapter "Improving the Flexibility of Production Scheduling in Flat Steel Production Through Standard and AI-based Approaches: Challenges and Perspective" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
An overview of the rapidly growing field of ant colony optimization that describes theoretical findings, the major algorithms, and current applications. The complex social behaviors of ants have been much studied by science, and computer scientists are now finding that these behavior patterns can provide models for solving difficult combinatorial optimization problems. The attempt to develop algorithms inspired by one aspect of ant behavior, the ability to find what computer scientists would call shortest paths, has become the field of ant colony optimization (ACO), the most successful and widely recognized algorithmic technique based on ant behavior. This book presents an overview of this rapidly growing field, from its theoretical inception to practical applications, including descriptions of many available ACO algorithms and their uses. The book first describes the translation of observed ant behavior into working optimization algorithms. The ant colony metaheuristic is then introduced and viewed in the general context of combinatorial optimization. This is followed by a detailed description and guide to all major ACO algorithms and a report on current theoretical findings. The book surveys ACO applications now in use, including routing, assignment, scheduling, subset, machine learning, and bioinformatics problems. AntNet, an ACO algorithm designed for the network routing problem, is described in detail. The authors conclude by summarizing the progress in the field and outlining future research directions. Each chapter ends with bibliographic material, bullet points setting out important ideas covered in the chapter, and exercises. Ant Colony Optimization will be of interest to academic and industry researchers, graduate students, and practitioners who wish to learn how to implement ACO algorithms.
Manufacturing systems, regardless of their size, have to work with scarce resources in dynamic environments. Effective Resource Management in Manufacturing Systems aims to provide methods for achieving effective resource allocation and to solve related problems that occur daily and often generate cost overruns. This book will be bought by postgraduate students of business, engineering and computer science as well as researchers in these fields. It will also be of interest to practitioners in manufacturing systems and operations managers in industry.
This book introduces readers to an evolutionary learning approach, specifically genetic programming (GP), for production scheduling. The book is divided into six parts. In Part I, it provides an introduction to production scheduling, existing solution methods, and the GP approach to production scheduling. Characteristics of production environments, problem formulations, an abstract GP framework for production scheduling, and evaluation criteria are also presented. Part II shows various ways that GP can be employed to solve static production scheduling problems and their connections with conventional operation research methods. In turn, Part III shows how to design GP algorithms for dynamic production scheduling problems and describes advanced techniques for enhancing GP’s performance, including feature selection, surrogate modeling, and specialized genetic operators. In Part IV, the book addresses how to use heuristics to deal with multiple, potentially conflicting objectives in production scheduling problems, and presents an advanced multi-objective approach with cooperative coevolution techniques or multi-tree representations. Part V demonstrates how to use multitask learning techniques in the hyper-heuristics space for production scheduling. It also shows how surrogate techniques and assisted task selection strategies can benefit multitask learning with GP for learning heuristics in the context of production scheduling. Part VI rounds out the text with an outlook on the future. Given its scope, the book benefits scientists, engineers, researchers, practitioners, postgraduates, and undergraduates in the areas of machine learning, artificial intelligence, evolutionary computation, operations research, and industrial engineering.
This title presents a large variety of models and algorithms dedicated to the resource-constrained project scheduling problem (RCPSP), which aims at scheduling at minimal duration a set of activities subject to precedence constraints and limited resource availabilities. In the first part, the standard variant of RCPSP is presented and analyzed as a combinatorial optimization problem. Constraint programming and integer linear programming formulations are given. Relaxations based on these formulations and also on related scheduling problems are presented. Exact methods and heuristics are surveyed. Computational experiments, aiming at providing an empirical insight on the difficulty of the problem, are provided. The second part of the book focuses on several other variants of the RCPSP and on their solution methods. Each variant takes account of real-life characteristics which are not considered in the standard version, such as possible interruptions of activities, production and consumption of resources, cost-based approaches and uncertainty considerations. The last part presents industrial case studies where the RCPSP plays a central part. Applications are presented in various domains such as assembly shop and rolling ingots production scheduling, project management in information technology companies and instruction scheduling for VLIW processor architectures.
This book presents a structured approach to develop mathematical optimization formulations for several variants of facility layout. The range of layout problems covered includes row layouts, floor layouts, multi-floor layouts, and dynamic layouts. The optimization techniques used to formulate the problems are primarily mixed-integer linear programming, second-order conic programming, and semidefinite programming. The book also covers important practical considerations for solving the formulations. The breadth of approaches presented help the reader to learn how to formulate a variety of problems using mathematical optimization techniques. The book also illustrates the use of layout formulations in selected engineering applications, including manufacturing, building design, automotive, and hospital layout.