Download Free Application Of Geochemical Tracers To Fluvial Sediment Book in PDF and EPUB Free Download. You can read online Application Of Geochemical Tracers To Fluvial Sediment and write the review.

This book takes an in-depth look at the theory and methods inherent in the tracing of riverine sediments. Examined tracers include multi-elemental concentration data, fallout radionuclides (e.g., 210Pb, 137Cs, 7Be), radiogenic isotopes (particularly those of Pb, Sr, and Nd), and novel (“non-traditional”) stable isotopes (e.g., Cd, Cu, Hg, and Zn), the latter of which owe their application to recent advances in analytical chemistry. The intended goal is not to replace more ‘traditional’ analyses of the riverine sediment system, but to show how tracer/fingerprinting studies can be used to gain insights into system functions that would not otherwise be possible. The text, then, provides researchers and catchment managers with a summary of the strengths and limitations of the examined techniques in terms of their temporal and spatial resolution, data requirements, and the uncertainties in the generated results. The use of environmental tracers has increased significantly during the past decade because it has become clear that documentation of sediment and sediment-associated contaminant provenance and dispersal is essential to mitigate their potentially harmful effects on aquatic ecosystems. Moreover, the use of monitoring programs to determine the source of sediments to a water body has proven to be a costly, labor intensive, long-term process with a spatial resolution that is limited by the number of monitoring sites that can be effectively maintained. Alternative approaches, including the identification and analysis of eroded upland areas and the use of distributed modeling routines also have proven problematic. The application of tracers within riverine environments has evolved such that they focus on sediments from two general sources: upland areas and specific, localized, anthropogenic point sources. Of particular importance to the former is the development of geochemical fingerprinting methods that quantify sediment provenance (and to a much lesser degree, sediment-associated contaminants) at the catchment scale. These methods have largely developed independently of the use of tracers to document the source and dispersal pathways of contaminated particles from point-sources of anthropogenic pollution at the reach- to river corridor-scale. Future studies are likely to begin merging the strengths of both approaches while relying on multiple tracer types to address management and regulatory issues, particularly within the context of the rapidly developing field of environmental forensics.
The Superfund program of the US Environmental Protection Agency (EPA) was created in the 1980s to address human-health and environmental risks posed by abandoned or uncontrolled hazardous-waste sites. Identification of Superfund sites and their remediation is an expensive multistep process. As part of this process, EPA attempts to identify parties that are responsible for the contamination and thus financially responsible for remediation. Identification of potentially responsible parties is complicated because Superfund sites can have a long history of use and involve contaminants that can have many sources. Such is often the case for mining sites that involve metal contamination; metals occur naturally in the environment, they can be contaminants in the wastes generated at or released from the sites, and they can be used in consumer products, which can degrade and release the metals back to the environment. This report examines the extent to which various sources contribute to environmental lead contamination at Superfund sites that are near lead-mining areas and focuses on sources that contribute to lead contamination at sites near the Southeast Missouri Lead Mining District. It recommends potential improvements in approaches used for assessing sources of lead contamination at or near Superfund sites.
Tracers in Hydrology and Water Research is a comprehensive overview of the application of natural and artificial tracers in hydrology and environmental research. Taking a unique approach by providing the reader with a systematic and state of the art description of natural and artificial tracers, the book also covers key analytical techniques and applications, and modern tracer methods in the context of systematic hydrology. Tracers have become a primary tool for process investigation, qualitative and quantitative system analysis and integrated resource management. This book will outline the fundamentals of the subject, and examine the latest research findings, clearly showing the entire process of tracer application through the inclusion of numerous integrated case studies. As many techniques derive from different scientific disciplines (chemistry, biology, physics), the effort of compilation and integration into modern hydrology and environmental science research and application requires substantial continuity and experience, which certifies this group of authors. This book will be an invaluable reference not only for students and researchers within the field of Hydrology and Hydrogeology but also for engineers and other tracer techniques applying users.
Water quality and management are of great significance globally, as the demand for clean, potable water far exceeds the availability. Water science research brings together the natural and applied sciences, engineering, chemistry, law and policy, and economics, and the Treatise on Water Science seeks to unite these areas through contributions from a global team of author-experts. The 4-volume set examines topics in depth, with an emphasis on innovative research and technologies for those working in applied areas. Published in partnership with and endorsed by the International Water Association (IWA), demonstrating the authority of the content Editor-in-Chief Peter Wilderer, a Stockholm Water Prize recipient, has assembled a world-class team of volume editors and contributing authors Topics related to water resource management, water quality and supply, and handling of wastewater are treated in depth
Fluvial Geomorphology studies the biophysical processes acting in rivers, and the sediment patterns and landforms resulting from them. It is a discipline of synthesis, with roots in geology, geography, and river engineering, and with strong interactions with allied fields such as ecology, engineering and landscape architecture. This book comprehensively reviews tools used in fluvial geomorphology, at a level suitable to guide the selection of research methods for a given question. Presenting an integrated approach to the interdisciplinary nature of the subject, it provides guidance for researchers and professionals on the tools available to answer questions on river restoration and management. Thoroughly updated since the first edition in 2003 by experts in their subfields, the book presents state-of-the-art tools that have revolutionized fluvial geomorphology in recent decades, such as physical and numerical modelling, remote sensing and GIS, new field techniques, advances in dating, tracking and sourcing, statistical approaches as well as more traditional methods such as the systems framework, stratigraphic analysis, form and flow characterisation and historical analysis. This book: Covers five main types of geomorphological questions and their associated tools: historical framework; spatial framework; chemical, physical and biological methods; analysis of processes and forms; and future understanding framework. Provides guidance on advantages and limitations of different tools for different applications, data sources, equipment and supplies needed, and case studies illustrating their application in an integrated perspective. It is an essential resource for researchers and professional geomorphologists, hydrologists, geologists, engineers, planners, and ecologists concerned with river management, conservation and restoration. It is a useful supplementary textbook for upper level undergraduate and graduate courses in Geography, Geology, Environmental Science, Civil and Environmental Engineering, and interdisciplinary courses in river management and restoration.
This work summarizes the historical progression of the field of lithium (Li) isotope studies and provides a comprehensive yet succinct overview of the research applications toward which they have been directed. In synthesizing the historical and current research, the volume also suggests prospective future directions of study. Not even a full decade has passed since the publication of a broadly inclusive summary of Li isotope research around the globe (Tomascak, 2004). In this short time, the use of this isotope system in the investigation of geo- and cosmochemical questions has increased dramatically, due, in part, to the advent of new analytical technology at the end of the last millennium. Lithium, as a light element that forms low-charge, moderate-sized ions, manifests a number of chemical properties that make its stable isotope system useful in a wide array of geo- and cosmochemical research fields.
This is the first interdisciplinary book on the mobilization of nutrients and pollutants in the water phase due to hydrodynamic processes. Coverage includes the formation of aggregates in turbulent water; flocks and biofilms from organic reactions; and the formation of new surfaces for re-adsorption of dissolved pollutants. The book gathers papers resulting from an International Symposium on Sediment Dynamics and Pollutant Mobility in River Basins in Hamburg, Germany, March, 2006.