Download Free Application Of Control Volume Based Finite Element Method Cvfem For Nanofluid Flow And Heat Transfer Book in PDF and EPUB Free Download. You can read online Application Of Control Volume Based Finite Element Method Cvfem For Nanofluid Flow And Heat Transfer and write the review.

Application of Control Volume Based Finite Element Method (CVFEM) for Nanofluid Flow and Heat Transfer discusses this powerful numerical method that uses the advantages of both finite volume and finite element methods for the simulation of multi-physics problems in complex geometries, along with its applications in heat transfer and nanofluid flow. The book applies these methods to solve various applications of nanofluid in heat transfer enhancement. Topics covered include magnetohydrodynamic flow, electrohydrodynamic flow and heat transfer, melting heat transfer, and nanofluid flow in porous media, all of which are demonstrated with case studies. This is an important research reference that will help readers understand the principles and applications of this novel method for the analysis of nanofluid behavior in a range of external forces. - Explains governing equations for nanofluid as working fluid - Includes several CVFEM codes for use in nanofluid flow analysis - Shows how external forces such as electric fields and magnetic field effects nanofluid flow
Different numerical and analytical methods have been employed to find the solution of governing equations for nanofluid flow and heat transfer. Applications of Nanofluid Transportation and Heat Transfer Simulation provides emerging research exploring the theoretical and practical aspects and applications of heat and nanofluid transfer. With practical examples and proposed methodology, it features coverage on a broad range of topics such as nanoparticles, electric fields, and hydrothermal behavior, making it an ideal reference source for engineers, researchers, graduate students, professionals, and academics.
Studies of fluid flow and heat transfer in a porous medium have been the subject of continuous interest for the past several decades because of the wide range of applications, such as geothermal systems, drying technologies, production of thermal isolators, control of pollutant spread in groundwater, insulation of buildings, solar power collectors, design of nuclear reactors, and compact heat exchangers, etc. There are several models for simulating porous media such as the Darcy model, Non-Darcy model, and non-equilibrium model. In porous media applications, such as the environmental impact of buried nuclear heat-generating waste, chemical reactors, thermal energy transport/storage systems, the cooling of electronic devices, etc., a temperature discrepancy between the solid matrix and the saturating fluid has been observed and recognized.
In the recent decades, efficiency enhancement of refineries and chemical plants has been become a focus of research and development groups. Use of nanofluids in absorption, regeneration, liquid-liquid extraction and membrane processes can lead to mass transfer and heat transfer enhancement in processes which results in an increased efficiency in all these processes. Nanofluids and Mass Transfer introduces the role of nanofluids in improving mass transfer phenomena and expressing their characteristics and properties. The book also covers the theory and modelling procedures in details and finally illustrates various applications of Nanofluids in mass transfer enhancement in various processes such as absorption, regeneration, liquid-liquid extraction and membrane processes and how can nanofluids increase mass transfer in processes. - Introduces specifications of nanofluids and mechanisms of mass transfer enhancement by nanofluids in various mass transfer processes - Discusses mass transfer enhancement in various mass transfer processes such as: absorption, regeneration, liquid-liquid extraction and membrane processes - Offers modelling mass transfer and flow in nanofluids - Challenges industrialization and scale up of nanofluids
The consumption of any kind of energy has a significant role in protecting energy in the economic development of any country. Today, request in the sector has led to beautiful and large buildings around the world. It is noteworthy that buildings will spend about 30% of the worldwide energy produced. An energy storage system should have certain features that include proper energy storage material with a specific melting temperature at the optimum range, decent heat transfer well, and a pleasant enclosure compatible with the most important energy storage methods. Some features of nano-enhanced phase change materials are presented in this book.
Control volume finite element methods (CVFEM) bridge the gap between finite difference and finite element methods, using the advantages of both methods for simulation of multi-physics problems in complex geometries. In Hydrothermal Analysis in Engineering Using Control Volume Finite Element Method, CVFEM is covered in detail and applied to key areas of thermal engineering. Examples, exercises, and extensive references are used to show the use of the technique to model key engineering problems such as heat transfer in nanofluids (to enhance performance and compactness of energy systems), hydro-magnetic techniques in materials and bioengineering, and convective flow in fluid-saturated porous media. The topics are of practical interest to engineering, geothermal science, and medical and biomedical sciences. - Introduces a detailed explanation of Control Volume Finite Element Method (CVFEM) to provide for a complete understanding of the fundamentals - Demonstrates applications of this method in various fields, such as nanofluid flow and heat transfer, MHD, FHD, and porous media - Offers complete familiarity with the governing equations in which nanofluid is used as a working fluid - Discusses the governing equations of MHD and FHD - Provides a number of extensive examples throughout the book - Bonus appendix with sample computer code
Nanofluids are a new class of heat transfer fluids engineered by dispersing and stably suspending nanoparticles in traditional heat transfer fluids. Recently they have obtained global attention from the scientific community owing to their unique properties and significant applications in different engineering fields. Nanofluids: Preparation, Applications and Simulation Methods provides a comprehensive review of recent advances in this important research field. Different approaches for preparing some remarkable families of nanofluids such as aluminum oxide-based nanofluids, CuO/Cu-based nanofluids, carbon nanotubes/graphene-based nanofluids, ZnO-based nanofluids, Fe3O4-based nanofluids, and SiO2-based nanofluids are discussed in detail as well as their current and potential applications. Different approaches for numerical, semi-analytical and analytical simulations are also discussed including molecular dynamics, the Lattice Boltzmann method, and spectral methods, as well as advanced analytical techniques such as the Differential Transform Method, the Homotopy Analysis Method, and Optimal Homotopy Analysis. The book will be a valuable reference resource for academic and industrial researchers, materials scientists and engineers, nanotechnologists, and chemists working in the development of nanomaterials and nanofluids for heat transfer in energy and engineering applications. - Covers the synthesis of nanostructures, preparation of nanofluids, different applications and proposed models for fluid mechanics and heat transfer - Presents recent advances on preparation methods, including green chemistry-based methods for preparation of nanomaterials and nanofluids - Includes novel model-based approaches such as molecular dynamics and Lattice Boltzmann methods - Delves into applications in renewable energy technologies and thermal management - Contains a Semi-analytical approach for solving Time-Fractional Navier-Stokes Equation
Publisher’s note: This is a 2nd edition due to an article retraction.
Applications of Nanofluid for Heat Transfer Enhancement explores recent progress in computational fluid dynamic and nonlinear science and its applications to nanofluid flow and heat transfer. The opening chapters explain governing equations and then move on to discussions of free and forced convection heat transfers of nanofluids. Next, the effect of nanofluid in the presence of an electric field, magnetic field, and thermal radiation are investigated, with final sections devoted to nanofluid flow in porous media and application of nanofluid for solidification. The models discussed in the book have applications in various fields, including mathematics, physics, information science, biology, medicine, engineering, nanotechnology, and materials science. - Presents the latest information on nanofluid free and force convection heat transfer, of nanofluid in the presence of thermal radiation, and nanofluid in the presence of an electric field - Provides an understanding of the fundamentals in new numerical and analytical methods - Includes codes for each modeling method discussed, along with advice on how to best apply them
Nanofluid Applications for Advanced Thermal Solutions covers heat transfer applications of nanofluids in a variety of fields and the main techniques used in nanofluid flow and heat transfer analysis. The book features an introduction to heat transfer, nanofluid conduction, convection and nanofluid boiling and provides a thorough understanding of a variety of applications, including the energy storage component of solar PVT systems. It covers fundamental topics such as the analysis and measurement of thermophysical properties, convection, and heat transfer equipment performance, and provides a rigorous framework to assist readers in developing new nanofluid-based devices. Finally, the book explores convective instabilities, nanofluids in porous media, and entropy generation in nanofluids. This will be a valuable resource for upper undergraduate, postgraduate, and doctoral students and researchers in the fields of nanotechnology and nanofluids looking at heat transfer processes in chemical engineering and the petroleum industry. - Provides a comprehensive overview of the heat transfer application of nanofluids in a variety of fields - Features numerical and experimental investigations of hybrid and mono nanoparticles based nanofluids - Explores comparative performance investigations of various nanofluids for absorption/regeneration and metal extraction/stripping operations - Provides case examples of operation and scale-up challenges for nanofluid applications in the industrial process