Download Free Antineutrino Oscillations And A Search For Non Standard Interactions With The Minos Book in PDF and EPUB Free Download. You can read online Antineutrino Oscillations And A Search For Non Standard Interactions With The Minos and write the review.

This thesis highlights data from MINOS, a long-baseline accelerator neutrino experiment, and details one of the most sensitive searches for the sterile neutrino ever made. Further, it presents a new analysis paradigm to enable this measurement and a comprehensive study of the myriad systematic uncertainties involved in a search for a few-percent effect, while also rigorously investigating the statistical interpretation of the findings in the context of a sterile neutrino model. Among the scientific community, this analysis was quickly recognized as a foundational measurement in light of which all previous evidence for the sterile neutrino must now be (re)interpreted. The existence of sterile neutrinos has long been one of the key questions in the field. Not only are they a central component in many theories of new physics, but a number of past experiments have yielded results consistent with their existence. Nonetheless, they remain controversial: the interpretation of the data showing evidence for these sterile neutrinos is hotly debated.
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.
Reviews the current state of knowledge of neutrino masses and the related question of neutrino oscillations. After an overview of the theory of neutrino masses and mixings, detailed accounts are given of the laboratory limits on neutrino masses, astrophysical and cosmological constraints on those masses, experimental results on neutrino oscillations, the theoretical interpretation of those results, and theoretical models of neutrino masses and mixings. The book concludes with an examination of the potential of long-baseline experiments. This is an essential reference text for workers in elementary-particle physics, nuclear physics, and astrophysics.
The centerpiece of the thesis is the search for muon neutrino to electron neutrino oscillations which would indicate a non-zero mixing angle between the first and third neutrino generations (θ13), currently the “holy grail” of neutrino physics. The optimal extraction of the electron neutrino oscillation signal is based on the novel “library event matching” (LEM) method which Ochoa developed and implemented together with colleagues at Caltech and at Cambridge, which improves MINOS’ (Main Injector Neutrino Oscillator Search) reach for establishing an oscillation signal over any other method. LEM will now be the basis for MINOS’ final results, and will likely keep MINOS at the forefront of this field until it completes its data taking in 2011. Ochoa and his colleagues also developed the successful plan to run MINOS with a beam tuned for antineutrinos, to make a sensitive test of CPT symmetry by comparing the inter-generational mass splitting for neutrinos and antineutrinos. Ochoa’s in-depth, creative approach to the solution of a variety of complex experimental problems is an outstanding example for graduate students and longtime practitioners of experimental physics alike. Some of the most exciting results in this field to emerge in the near future may find their foundations in this thesis.
Supergravity, together with string theory, is one of the most significant developments in theoretical physics. Written by two of the most respected workers in the field, this is the first-ever authoritative and systematic account of supergravity. The book starts by reviewing aspects of relativistic field theory in Minkowski spacetime. After introducing the relevant ingredients of differential geometry and gravity, some basic supergravity theories (D=4 and D=11) and the main gauge theory tools are explained. In the second half of the book, complex geometry and N=1 and N=2 supergravity theories are covered. Classical solutions and a chapter on AdS/CFT complete the book. Numerous exercises and examples make it ideal for Ph.D. students, and with applications to model building, cosmology and solutions of supergravity theories, it is also invaluable to researchers. A website hosted by the authors, featuring solutions to some exercises and additional reading material, can be found at www.cambridge.org/supergravity.
This self-contained modern textbook provides a modern description of the Standard Model and its main extensions from the perspective of neutrino physics. In particular it includes a thorough discussion of the varieties of seesaw mechanism, with or without supersymmetry. It also discusses schemes where neutrino mass arises from lighter messengers, which might lie within reach of the world's largest particle accelerator, the Large Hadron Collider. Throughout the text, the book stresses the role of neutrinos due to the fact that neutrino properties may serve as a guide to the correct model of unification, hence for a deeper understanding of high energy physics, and because neutrinos play an important role in astroparticle physics and cosmology. Each chapter includes summaries and set of problems, as well as further reading.
Our Universe is made of a dozen fundamental building blocks. Among these, neutrinos are the most mysterious - but they are the second most abundant particles in the Universe. This book provides detailed discussions of how to describe neutrinos, their basic properties, and the roles they play in nature.
The handbook centers on detection techniques in the field of particle physics, medical imaging and related subjects. It is structured into three parts. The first one is dealing with basic ideas of particle detectors, followed by applications of these devices in high energy physics and other fields. In the last part the large field of medical imaging using similar detection techniques is described. The different chapters of the book are written by world experts in their field. Clear instructions on the detection techniques and principles in terms of relevant operation parameters for scientists and graduate students are given.Detailed tables and diagrams will make this a very useful handbook for the application of these techniques in many different fields like physics, medicine, biology and other areas of natural science.
The workshop has reviewed progress towards the future generation of neutrino oscillation experiments. These experiments will use very intense conventional neutrino beams and novel beams derived from muons or radioactive nuclei. These new facilities will provide a broad research front including muon physics and neutrino scattering experiments. The main technical challenges involve construction of very intense proton beams, targeting, effective capture of produced particles, cooling and ultra-fast acceleration of the resulting muons.