Download Free Annual International Conference Proceedings October 17 21 Las Vegas Nevada Book in PDF and EPUB Free Download. You can read online Annual International Conference Proceedings October 17 21 Las Vegas Nevada and write the review.

Statistical agencies, research organizations, companies, and other data stewards that seek to share data with the public face a challenging dilemma. They need to protect the privacy and confidentiality of data subjects and their attributes while providing data products that are useful for their intended purposes. In an age when information on data subjects is available from a wide range of data sources, as are the computational resources to obtain that information, this challenge is increasingly difficult. The Handbook of Sharing Confidential Data helps data stewards understand how tools from the data confidentiality literature—specifically, synthetic data, formal privacy, and secure computation—can be used to manage trade-offs in disclosure risk and data usefulness. Key features: • Provides overviews of the potential and the limitations of synthetic data, differential privacy, and secure computation • Offers an accessible review of methods for implementing differential privacy, both from methodological and practical perspectives • Presents perspectives from both computer science and statistical science for addressing data confidentiality and privacy • Describes genuine applications of synthetic data, formal privacy, and secure computation to help practitioners implement these approaches The handbook is accessible to both researchers and practitioners who work with confidential data. It requires familiarity with basic concepts from probability and data analysis.
Cyber-Security Threats, Actors, and Dynamic Mitigation provides both a technical and state-of-the-art perspective as well as a systematic overview of the recent advances in different facets of cyber-security. It covers the methodologies for modeling attack strategies used by threat actors targeting devices, systems, and networks such as smart homes, critical infrastructures, and industrial IoT. With a comprehensive review of the threat landscape, the book explores both common and sophisticated threats to systems and networks. Tools and methodologies are presented for precise modeling of attack strategies, which can be used both proactively in risk management and reactively in intrusion prevention and response systems. Several contemporary techniques are offered ranging from reconnaissance and penetration testing to malware detection, analysis, and mitigation. Advanced machine learning-based approaches are also included in the area of anomaly-based detection, that are capable of detecting attacks relying on zero-day vulnerabilities and exploits. Academics, researchers, and professionals in cyber-security who want an in-depth look at the contemporary aspects of the field will find this book of interest. Those wanting a unique reference for various cyber-security threats and how they are detected, analyzed, and mitigated will reach for this book often.