Download Free Anisotropy And Localization Of Plastic Deformation Book in PDF and EPUB Free Download. You can read online Anisotropy And Localization Of Plastic Deformation and write the review.

Present developments in materials science, mechanics and engineering, as well as the demands of modern technology, result in a new and growing interest in plasticity and in bordering domains of the mechanical behavior of materials. This growing interest is attested to by the success of both The International Journal of Plasticity, which after its inception rapidly became the leading journal for plasticity research, and the series ofInternational Symposia on Plasticity and Its Current Applications, which is now the premier international forum for plasticity research dissemination. The First International Symposium on Plasticity and Its Current Applications was conceived and organized by Professor Akhtar S. Khan, and was held at the University of Oklahoma (Norman, Oklahoma, USA) from July 30 to August 3, 1984. It was attended by over one hundred scientists from fifteen countries. "Plasticity '89: the Second International Symposium on Plasticity and Its Current Applications" was held at Mie University (Tsu, Japan) from July 31 to August 4, 1989; this symposium was co-chaired by Professors Khan and Tokuda. The main emphasis of this meeting was on dynamic plasticity and micromechanics, although it included other aspects of plasticity as well. It was attended by over two hundred researchers from twenty-three nations.
Instabilities Modeling in Geomechanics describes complex mechanisms which are frequently met in earthquake nucleation, geothermal energy production, nuclear waste disposal and CO2 sequestration. These mechanisms involve systems of non-linear differential equations that express the evolution of the geosystem (e.g. strain localization, temperature runaway, pore pressure build-up, etc.) at different length and time scales. In order to study the evolution of a system and possible instabilities, it is essential to know the mathematical properties of the governing equations. Therefore, questions of the existence, uniqueness and stability of solutions naturally arise. This book particularly explores bifurcation theory and stability analysis, which are robust and rigorous mathematical tools that allow us to study the behavior of complex geosystems, without even explicitly solving the governing equations. The contents are organized into 10 chapters which illustrate the application of these methods in various fields of geomechanics.
Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical load. With its various application examples to micro- and macrostructure mechanics, this is an invaluable resource for mechanical engineers as well as for researchers wanting to improve on this method and extend its outreach.
Offering a well-balanced blend of theory and hands-on applications, this book presents a unified framework for the main dissipative phenomena in metallic materials: plasticity and damage. Based on representation theory for tensor functions and scale-bridging theorems, this framework enables the development of constitutive models that account for the influence of crystallographic structures and deformation mechanisms on the macroscopic behavior. It allows readers to develop a clear understanding of the range of applicability of any given model, as well as its capabilities and limitations, and provides procedures for parameter identification along with key concepts necessary to solve boundary value problems, making it useful to both researchers and engineering practitioners. Although the book focuses on new contributions to modeling anisotropic materials, the review of the foundations of plasticity and models for isotropic materials, completed with detailed mathematical proofs mean that it is self-consistent and accessible to graduate students in engineering mechanics and material sciences.
Publisher Description
A multidisciplinary perspective on the dynamic processes occurring in Earth's mantle The convective motion of material in Earth's mantle, powered by heat from the deep interior of our planet, drives plate tectonics at the surface, generating earthquakes and volcanic activity. It shapes our familiar surface landscapes, and also stabilizes the oceans and atmosphere on geologic timescales. Mantle Convection and Surface Expressions brings together perspectives from observational geophysics, numerical modelling, geochemistry, and mineral physics to build a holistic picture of the deep Earth. It explores the dynamic processes occurring in the mantle as well as the associated heat and material cycles. Volume highlights include: Perspectives from different scientific disciplines with an emphasis on exploring synergies Current state of the mantle, its physical properties, compositional structure, and dynamic evolution Transport of heat and material through the mantle as constrained by geophysical observations, geochemical data and geodynamic model predictions Surface expressions of mantle dynamics and its control on planetary evolution and habitability The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.
Volume 51 of Reviews in Mineralogy and Geochemistry highlights some of the frontiers in the study of plastic deformation of minerals and rocks. This book reviews large-strain shear deformation and deformation experiments under ultrahigh pressures; the issues of deformation of crustal rocks and the upper mantle; the interplay of partial melting and deformation; the new results of ultrahigh pressure deformation of deep mantle minerals; the stability of deformation under deep mantle conditions with special reference to phase transformations and their relationship to the origin of intermediate depth and deep-focus earthquakes; a detailed description of fracture mechanisms of ice; of experimental and theoretical studies on seismic wave attenuation; the relationship between crystal preferred orientation and macroscopic anisotropy; recent progress in poly-crystal plasticity to model the development of anisotropic fabrics both at the microscopic and macroscopic scale; a thorough review of seismic anisotropy of the upper mantle covering the vast regions of geodynamic interests and the theoretical aspects of shear localization. All chapters contain extensive reference lists to guide readers to the more specialized literature. This volume was written for a workshop, in December 2002 in Emeryville, California.
Discover a novel approach to the subject, providing detailed information about established and innovative mechanical testing procedures.
This book unifies, for the first time in book form, the main concepts of the physical and mathematical theory of plasticity. It presents the foundations of modern anisotropic plasticity, which link microscopic observations of texture formation with macroscopic properties of plastically anisotropic materials. Progress in metal-forming technologies has created the necessity to express the plastic yield process in terms of mathematics in order to apply computer methods. In addition new materials used in structural elements require a more detailed description of their physical structure. Amongst both metallurgists and mechanical designers, a strong tendency exists to formulate the scientific material in a common language. This book meets this request, although it has no ambitions to summarise the existing state of knowledge, only to combine the mathematical and physical approaches. The book is mainly addressed to mechanical designers. It is written for researchers who have a knowledge of physics and who want a mathematical tool for using this knowledge for a better description of technological processes. Moreover, it will interest metallurgists who want to have a more general view of their field of research, as well as for mechanical and civil engineers who want to apply some microstructural knowledge in their work. It could also be useful for graduate students at post-doctorate level who want to enter the field of plastic deformation of polycrystalline metals with texture.