Download Free Anisotropic Seismic Characterization Of The Eagle Ford Shale Book in PDF and EPUB Free Download. You can read online Anisotropic Seismic Characterization Of The Eagle Ford Shale and write the review.

Exploration and characterization of conventional and unconventional reservoirs using seismic technologies are among the main activities of upstream technology groups and business units of oil and gas operators. However, these activities frequently encounter difficulties in quantitative seismic interpretation due to remaining confusion and new challenges in the fast developing field of seismic petrophysics. Seismic Petrophysics in Quantitative Interpretation shows how seismic interpretation can be made simple and robust by integration of the rock physics principles with seismic and petrophysical attributes bearing on the properties of both conventional (thickness, net/gross, lithology, porosity, permeability, and saturation) and unconventional (thickness, lithology, organic richness, thermal maturity) reservoirs. Practical solutions to existing interpretation problems in rock physics-based amplitude versus offset (AVO) analysis and inversion are addressed in the book to streamline the workflows in subsurface characterization. Although the book is aimed at oil and gas industry professionals and academics concerned with utilization of seismic data in petroleum exploration and production, it could also prove helpful for geotechnical and completion engineers and drillers seeking to better understand how seismic and sonic data can be more thoroughly utilized.
Geomechanics has a marked impact on the safe and sustainable use of the subsurface. Along with an ongoing demand for hydrocarbon resources there is also a growing emphasis on sustainable subsurface exploitation and development, storage of carbon, hydrogen, energy and (radioactive) waste, as well as sustainable geothermal resource utilization. Such activities are accompanied by an ever-increasing need for higher resolution, fit-for-purpose solutions, workflows and approaches to constrain present-day subsurface stresses and minimize associated uncertainties. Building high fidelity geomechanical-numerical models provides critical input and understanding for diverse engineering designs and construction as well as geoscience applications. Such models greatly contribute towards uncertainty reduction, risk management and risk mitigation during the operational life of a given subsurface development and associated infrastructures (both on and below the surface). This Special Publication contains contributions detailing the latest efforts and perspectives in present-day in-situ stress characterization, prediction and modelling from the borehole to plate-tectonic scale. There is particular emphasis on the uncertainties that are often associated with data and models.
This book is a useful guide for researchers involved in the technological innovation and production of shale gas exploration and development. It offers a thorough understanding of seismic technologies and their application in shale gas exploration and extraction.This book comprehensively and systematically presents the significance of seismic technologies in predicting shale gas sweet spots. It introduces state-of-the-art seismic-based prediction technologies as well as case studies showcasing their implementation in primary shale gas production areas in China. Innovativeness is one of the highlights of this book. Cutting-edge technologies, such as AI applied in identifying shale gas sweet spots, and achieving excellent results in shale gas production are presented.Readers will gain insights into the latest methodologies, models, and real-world examples, equipping them with the necessary tools to navigate the complex landscape of shale gas resources.
This contributed volume presents a multi-perspective collection of the latest research findings on oil and gas exploration and imparts insight that can greatly assist in understanding field behavior, design of test programs, and design of field operations. With this book, engineers also gain a powerful guide to the most commonly used numerical simulation methods that aid in reservoir modelling. In addition, the contributors explore development of technologies that allow for cost effective oil and gas exploration while minimizing the impact on our water resources, surface and groundwater aquifers, geological stability of impacted areas, air quality, and infrastructure assets such as roads, pipelines, water, and wastewater networks. Easy to understand, the book identifies equipment and procedural problems inherent to oil and gas operations and provides systematic approaches for solving them.
The Handbook of Borehole Acoustics and Rock Physics for Reservoir Characterization combines in a single useful handbook the multidisciplinary domains of the petroleum industry, including the fundamental concepts of rock physics, acoustic logging, waveform processing, and geophysical application modeling through graphical examples derived from field data. It includes results from core studies, together with graphics that validate and support the modeling process, and explores all possible facets of acoustic applications in reservoir evaluation for hydrocarbon exploration, development, and drilling support. The Handbook of Borehole Acoustics and Rock Physics for Reservoir Characterization serves as a technical guide and research reference for oil and gas professionals, scientists, and students in the multidisciplinary field of reservoir characterization through the use of petrosonics. It overviews the fundamentals of borehole acoustics and rock physics, with a focus on reservoir evaluation applications, explores current advancements through updated research, and identifies areas of future growth. - Presents theory, application, and limitations of borehole acoustics and rock physics through field examples and case studies - Features "Petrosonic Workflows" for various acoustic applications and evaluations, which can be easily adapted for practical reservoir modeling and interpretation - Covers the potential advantages of acoustic-based techniques and summarizes key results for easy geophysical application
There has been ever increasing interest in understanding the various aspects of available resources and production, in terms of need and supply, conservation and environmental impacts and so on. From the current energy scenario, it is very clear that there are serious challenges related in achieving energy sustainability and security worldwide. The aim of this book is to present an overview of progress made towards energy sustainability addressing concerns regarding carbon emission and clean energy resources. Keeping this in mind, the book has chapters on all major energy sources which are being utilized at present, along with those having potential prospects for future.
Useful attributes capture and quantify key components of the seismic amplitude and texture for subsequent integration with well log, microseismic, and production data through either interactive visualization or machine learning. Although both approaches can accelerate and facilitate the interpretation process, they can by no means replace the interpreter. Interpreter “grayware” includes the incorporation and validation of depositional, diagenetic, and tectonic deformation models, the integration of rock physics systematics, and the recognition of unanticipated opportunities and hazards. This book is written to accompany and complement the 2018 SEG Distinguished Instructor Short Course that provides a rapid overview of how 3D seismic attributes provide a framework for data integration over the life of the oil and gas field. Key concepts are illustrated by example, showing modern workflows based on interactive interpretation and display as well as those aided by machine learning.
A comprehensive overview of the key geologic, geomechanical and engineering principles that govern the development of unconventional oil and gas reservoirs. Covering hydrocarbon-bearing formations, horizontal drilling, reservoir seismology and environmental impacts, this is an invaluable resource for geologists, geophysicists and reservoir engineers.
Accurate reservoir characterization is a key step in developing, monitoring, and managing a reservoir and optimizing production. To achieve accuracy and to ensure that all the information available at any given time is incorporated in the reservoirmodel, reservoir characterizationmust be dynamic. To achieve this goal, however, one starts with a simple model of the reservoir at a given time point (a static model). As new petrophysical, seismic, and production data become available, the reservoir model is updated to account for the changes in the reservoir. The updated model would be a better representative of the current status of the reservoir. Both static reservoir properties, such as porosity, permeability, and facies type; and dynamic reservoir properties, such as pressure, fluid saturation, and temperature, needs to be updated as more field data become available. Characterizing a reservoir by updating of both static and dynamic reservoir properties during the life of the field is referred to as dynamic reservoir characterization. Dynamic reservoir characterization is discussed in , dealing with time lapse or 4D geophysical data and reservoir monitoring. This chapter, however, focuses on static reservoir characterization.