Download Free Ancient Egyptian Science Ancient Egyptian Mathematics Book in PDF and EPUB Free Download. You can read online Ancient Egyptian Science Ancient Egyptian Mathematics and write the review.

This volume, the first of three volumes describing the major facets of Ancient Egyptian Science, concentrates on the origin and development of hieroglyphic writing, the scribal profession, and quasi-learned institutions in ancient Egypt. Professor Clagett has paid particular attention to the so-called Palermo Stone, the earliest annals composed in Eygpt.
The volume gives a discourse on the nature and accomplishments of Egyptian mathematics. The author quotes and discusses interpretations of such authors as Eisenlohr, Griffith, Hultsch, Peet, Struce, Neugebauer, Chace, Glanville, van der Waerden, Bruins, Gillings, and others. (Mathematics)
A survey of ancient Egyptian mathematics across three thousand years Mathematics in Ancient Egypt traces the development of Egyptian mathematics, from the end of the fourth millennium BC—and the earliest hints of writing and number notation—to the end of the pharaonic period in Greco-Roman times. Drawing from mathematical texts, architectural drawings, administrative documents, and other sources, Annette Imhausen surveys three thousand years of Egyptian history to present an integrated picture of theoretical mathematics in relation to the daily practices of Egyptian life and social structures. Imhausen shows that from the earliest beginnings, pharaonic civilization used numerical techniques to efficiently control and use their material resources and labor. Even during the Old Kingdom, a variety of metrological systems had already been devised. By the Middle Kingdom, procedures had been established to teach mathematical techniques to scribes in order to make them proficient administrators for their king. Imhausen looks at counterparts to the notation of zero, suggests an explanation for the evolution of unit fractions, and analyzes concepts of arithmetic techniques. She draws connections and comparisons to Mesopotamian mathematics, examines which individuals in Egyptian society held mathematical knowledge, and considers which scribes were trained in mathematical ideas and why. Of interest to historians of mathematics, mathematicians, Egyptologists, and all those curious about Egyptian culture, Mathematics in Ancient Egypt sheds new light on a civilization's unique mathematical evolution.
A lively collection of fun and challenging problems in ancient Egyptian math The mathematics of ancient Egypt was fundamentally different from our math today. Contrary to what people might think, it wasn't a primitive forerunner of modern mathematics. In fact, it can’t be understood using our current computational methods. Count Like an Egyptian provides a fun, hands-on introduction to the intuitive and often-surprising art of ancient Egyptian math. David Reimer guides you step-by-step through addition, subtraction, multiplication, and more. He even shows you how fractions and decimals may have been calculated—they technically didn’t exist in the land of the pharaohs. You’ll be counting like an Egyptian in no time, and along the way you’ll learn firsthand how mathematics is an expression of the culture that uses it, and why there’s more to math than rote memorization and bewildering abstraction. Reimer takes you on a lively and entertaining tour of the ancient Egyptian world, providing rich historical details and amusing anecdotes as he presents a host of mathematical problems drawn from different eras of the Egyptian past. Each of these problems is like a tantalizing puzzle, often with a beautiful and elegant solution. As you solve them, you’ll be immersed in many facets of Egyptian life, from hieroglyphs and pyramid building to agriculture, religion, and even bread baking and beer brewing. Fully illustrated in color throughout, Count Like an Egyptian also teaches you some Babylonian computation—the precursor to our modern system—and compares ancient Egyptian mathematics to today’s math, letting you decide for yourself which is better.
Discusses the achievements of the ancient Egyptians in science, mathematics, astronomy, medicine, agriculture, and technology.
As a leader, a coach is the most significant role you can play. Discover how coaching makes developing people a high-payoff activity where you can equip tomorrow’s leaders, today. As a coach to some of the country’s highest-profile executives, Daniel Harkavy has witnessed the transformation - both professional and personal - that comes when leaders utilize coaching to turn their paycheck-driven teams into cultures of vibrant and successful growth. Since founding his company Building Champions Inc. in 1996, Harkavy and his team have coached thousands and shared their knowledge by certifying coaching leaders across the country. Now, in this strategic and thought-provoking guide, he shares his proven strategy for improving your team’s performance while raising quality of life inside and outside of the office. In Becoming a Coaching Leader, you will learn: the core four foundations to every coaching strategy, the most powerful leadership tools you can and should leverage, and the key behaviors and disciplines of successful coaching leaders. Becoming a Coaching Leader shows you how to leverage coaching techniques to equip tomorrow’s leaders and pave a lasting leadership legacy.
In this fascinating study, architect and Egyptologist Corinna Rossi analyses the relationship between mathematics and architecture in ancient Egypt by exploring the use of numbers and geometrical figures in ancient architectural projects and buildings. While previous architectural studies have searched for abstract 'universal rules' to explain the history of Egyptian architecture, Rossi attempts to reconcile the different approaches of archaeologists, architects and historians of mathematics into a single coherent picture. Using a study of a specific group of monuments, the pyramids, and placing them in the context of their cultural and historical background, Rossi argues that theory and practice of construction must be considered as a continuum, not as two separated fields, in order to allow the original planning process of a building to re-emerge. Highly illustrated with plans, diagrams and figures, this book is essential reading for all scholars of Ancient Egypt and the architecture of ancient cultures.
In recent decades it has become obvious that mathematics has always been a worldwide activity. But this is the first book to provide a substantial collection of English translations of key mathematical texts from the five most important ancient and medieval non-Western mathematical cultures, and to put them into full historical and mathematical context. The Mathematics of Egypt, Mesopotamia, China, India, and Islam gives English readers a firsthand understanding and appreciation of these cultures' important contributions to world mathematics. The five section authors--Annette Imhausen (Egypt), Eleanor Robson (Mesopotamia), Joseph Dauben (China), Kim Plofker (India), and J. Lennart Berggren (Islam)--are experts in their fields. Each author has selected key texts and in many cases provided new translations. The authors have also written substantial section introductions that give an overview of each mathematical culture and explanatory notes that put each selection into context. This authoritative commentary allows readers to understand the sometimes unfamiliar mathematics of these civilizations and the purpose and significance of each text. Addressing a critical gap in the mathematics literature in English, this book is an essential resource for anyone with at least an undergraduate degree in mathematics who wants to learn about non-Western mathematical developments and how they helped shape and enrich world mathematics. The book is also an indispensable guide for mathematics teachers who want to use non-Western mathematical ideas in the classroom.
The authors' novel approach to some interesting mathematical concepts - not normally taught in other courses - places them in a historical and philosophical setting. Although primarily intended for mathematics undergraduates, the book will also appeal to students in the sciences, humanities and education with a strong interest in this subject. The first part proceeds from about 1800 BC to 1800 AD, discussing, for example, the Renaissance method for solving cubic and quartic equations and providing rigorous elementary proof that certain geometrical problems posed by the ancient Greeks cannot be solved by ruler and compass alone. The second part presents some fundamental topics of interest from the past two centuries, including proof of G del's incompleteness theorem, together with a discussion of its implications.