Download Free Analytical Chemistry Of The Actinide Elements Book in PDF and EPUB Free Download. You can read online Analytical Chemistry Of The Actinide Elements and write the review.

Analytical Chemistry of the Actinide Elements presents a number of pertinent techniques for the analysis of actinides and provides sufficient information to guide the analyst in modifying procedures to meet special situations. The book begins with an introductory chapter on the discovery of elements 89-103, their oxidation state, and their electronic configuration. Information is provided on the safe handling of radioactive materials (all actinides are radioactive). The use of nuclear techniques in determining trace concentrations of actinides has led to the inclusion of chapters dealing with nuclear instrumentation and nuclear methods. Topics discussed include the preliminary treatment of samples; separations; emission spectroscopy and mass spectrometry; electrochemical, x-ray, and fluorimetric methods; isotopic analysis of uranium and some other actinides; and non-instrumental methods. Thus, the analytical chemist, if he is not already familiar with these techniques, is indoctrinated in a basic amount of nucleonics, to aid him in analyzing unusual materials with unusual techniques.
The Chemistry of the Actinide and Transactinide Elements is a contemporary and definitive compilation of chemical properties of all of the actinide elements, especially of the technologically important elements uranium and plutonium, as well as the transactinide elements. In addition to the comprehensive treatment of the chemical properties of each element, ion, and compound from atomic number 89 (actinium) through to 109 (meitnerium), this multi-volume work has specialized and definitive chapters on electronic theory, optical and laser fluorescence spectroscopy, X-ray absorption spectroscopy, organoactinide chemistry, thermodynamics, magnetic properties, the metals, coordination chemistry, separations, and trace analysis. Several chapters deal with environmental science, safe handling, and biological interactions of the actinide elements. The Editors invited teams of authors, who are active practitioners and recognized experts in their specialty, to write each chapter and have endeavoured to provide a balanced and insightful treatment of these fascinating elements at the frontier of the periodic table. Because the field has expanded with new spectroscopic techniques and environmental focus, the work encompasses five volumes, each of which groups chapters on related topics. All chapters represent the current state of research in the chemistry of these elements and related fields.
Structural Chemistry of Inorganic Actinide Compounds is a collection of 13 reviews on structural and coordination chemistry of actinide compounds. Within the last decade, these compounds have attracted considerable attention because of their importance for radioactive waste management, catalysis, ion-exchange and absorption applications, etc. Synthetic and natural actinide compounds are also of great environmental concern as they form as a result of alteration of spent nuclear fuel and radioactive waste under Earth surface conditions, during burn-up of nuclear fuel in reactors, represent oxidation products of uranium miles and mine tailings, etc. The actinide compounds are also of considerable interest to material scientists due to the unique electronic properties of actinides that give rise to interesting physical properties controlled by the structural architecture of respective compounds. The book provides both general overview and review of recent developments in the field, including such emergent topics as nanomaterials and nanoparticles and their relevance to the transfer of actinides under environmental conditions.* Covers over 2,000 actinide compounds including materials, minerals and coordination polymers* Summarizes recent achievements in the field* Some chapters reveal (secret) advances made by the Soviet Union during the 'Cold war'
A review of contemporary actinide research that focuses on new advances in experiment and theory, and the interplay between these two realms Experimental and Theoretical Approaches to Actinide Chemistry offers a comprehensive review of the key aspects of actinide research. Written by noted experts in the field, the text includes information on new advances in experiment and theory and reveals the interplay between these two realms. The authors offer a multidisciplinary and multimodal approach to the nature of actinide chemistry, and explore the interplay between multiple experiments and theory, as well as between basic and applied actinide chemistry. The text covers the basic science used in contemporary studies of the actinide systems, from basic synthesis to state-of-the-art spectroscopic and computational techniques. The authors provide contemporary overviews of each topic area presented and describe the current and anticipated experimental approaches for the field, as well as the current and future computational chemistry and materials techniques. In addition, the authors explore the combination of experiment and theory. This important resource: Provides an essential resource the reviews the key aspects of contemporary actinide research Includes information on new advances in experiment and theory, and the interplay between the two Covers the basic science used in contemporary studies of the actinide systems, from basic synthesis to state-of-the-art spectroscopic and computational techniques Focuses on the interplay between multiple experiments and theory, as well as between basic and applied actinide chemistry Written for academics, students, professionals and researchers, this vital text contains a thorough review of the key aspects of actinide research and explores the most recent advances in experiment and theory.
The Chemistry of the Actinides contains selected chapters from the Comprehensive Inorganic Chemistry to meet the needs of certain specialists in this field. The book describes the 14 elements after actinium in the Periodic Table, known as the actinide elements or the 5f transition series. The book notes the occurrence, separation, chemical properties, chemical structures, and preparation of the metals. In a discussion of analytical chemistry, the radioactive properties of the actinides and the lanthanides are compared. The text then describes the nuclear or radiochemical records and chemical properties of the different members of the actinide series such as thorium, uranium, plutonium, and einsteinium. The book also explains the differences between the 5f shell and the 4f shell. One paper then discusses the groups of alloy compounds, including rare earths and intra-actinides. Another paper examines the general properties of actinide ions as to their electronic structure and oxidation states; the stability and preparation of the different oxidation states; and the applicability of solvent extraction in separating and purifying various substances. The text is suitable for researchers in organic chemistry, nuclear and atomic physicists, scientists, and academicians whose work involves radioactive materials.
Analytical Chemistry, Volume 24: The Analytical Chemistry of the Noble Metals describes the procedures for the separation, extraction, and analysis of noble metals. This book is composed of seven chapters, and begins with a survey on the influence of metallurgical factors on the susceptibility of platinum and gold metals to various corrosive agents. The succeeding chapter provides the methods of isolation of osmium and ruthenium from associated platinum metals and from base metals. A chapter examines the application of gravimetric methods for the separation of seven noble metals, including ruthenium, osmium, rhodium, iridium, palladium, platinum, and gold. Other chapters consider the procedures for volumetric, spectrophotometric, and spectrochemical analysis of noble metals. The concluding chapter describes the features and attributes of the equipment for noble metal analysis. This book is of value to analytical chemists and workers and researchers in metallurgy.
This is the first book to cover actinide nano research. It is of interest both for fundamental research into the chemistry and physics of f-block elements as well as for applied researchers such as those studying the long-term safety of nuclear waste disposal and developing remediation strategies. The authors cover important issues of the formation of actinide nano-particles, their properties and structure, environmental behavior of colloids and nanoparticles related to the safe disposal of nuclear wastes, modeling and advanced methods of characterization at the nano-scale.
The fourth edition of "The Chemistry of the Actinide and Transactinide Elements" comprises all chapters in volumes 1 through 5 of the third edition (published in 2006) plus a new volume 6. To remain consistent with the plan of the first edition, “ ... to provide a comprehensive and uniform treatment of the chemistry of the actinide [and transactinide] elements for both the nuclear technologist and the inorganic and physical chemist,” and to be consistent with the maturity of the field, the fourth edition is organized in three parts. The first group of chapters follows the format of the first and second editions with chapters on individual elements or groups of elements that describe and interpret their chemical properties. A chapter on the chemical properties of the transactinide elements follows. The second group, chapters 15-26, summarizes and correlates physical and chemical properties that are in general unique to the actinide elements, because most of these elements contain partially-filled shells of 5f electrons whether present as isolated atoms or ions, as metals, as compounds, or as ions in solution. The third group, chapters 27-39, focuses on specialized topics that encompass contemporary fields related to actinides in the environment, in the human body, and in storage or wastes. Two appendices at the end of volume 5 tabulate important nuclear properties of all actinide and transactinide isotopes. Volume 6 (Chapters 32 through 39) consists of new chapters that focus on actinide species in the environment, actinide waste forms, nuclear fuels, analytical chemistry of plutonium, actinide chalcogenide and hydrothermal synthesis of actinide compounds. The subject and author indices and list of contributors encompass all six volumes.
This book distills the knowledge gained from research into atoms in molecules over the last 10 years into a unique, handy reference. Throughout, the authors address a wide audience, such that this volume may equally be used as a textbook without compromising its research-oriented character. Clearly structured, the text begins with advances in theory before moving on to theoretical studies of chemical bonding and reactivity. There follow separate sections on solid state and surfaces as well as experimental electron densities, before finishing with applications in biological sciences and drug-design. The result is a must-have for physicochemists, chemists, physicists, spectroscopists and materials scientists.
Ionic liquids in Analytical Chemistry: New Insights and Recent Developments focuses on the use of these materials in the field of chemical analysis, paying attention to different areas such as sample preparation, separation techniques, spectroscopy and electrochemical methods. Chapters describe the structure and properties of new ionic liquids and eutectic solvents that are widely used in analytical chemistry, review ionic liquids in sample preparation, liquid, micellar liquid and gas chromatography, and capillary electrophoresis. Final chapters are devoted to spectroscopic and electrochemical techniques. The whole volume provides a broad overview of recent applications of ionic liquids. The book will serve as a valuable resource to researchers and laboratory technicians working in the field, as well as instructors and students of analytical chemistry. Gathers the contributions of leading authorities on the use of ionic liquids in analytical science Describes the structure and properties of the newer ionic liquids used in chemical analysis Examines the new performance of ionic liquids in analytical chemistry applications