Download Free Analysis Of Spherical Symmetries Book in PDF and EPUB Free Download. You can read online Analysis Of Spherical Symmetries and write the review.

This self-contained book offers a new and direct approach to the theories of special functions with emphasis on spherical symmetry in Euclidean spaces of arbitrary dimensions. Based on many years of lecturing to mathematicians, physicists and engineers in scientific research institutions in Europe and the USA, the author uses elementary concepts to present the spherical harmonics in a theory of invariants of the orthogonal group. One of the highlights is the extension of the classical results of the spherical harmonics into the complex - particularly important for the complexification of the Funk-Hecke formula which successfully leads to new integrals for Bessel- and Hankel functions with many applications of Fourier integrals and Radon transforms. Numerous exercises stimulate mathematical ingenuity and bridge the gap between well-known elementary results and their appearance in the new formations.
This is the first comprehensive, yet clearly presented, account of statistical methods for analysing spherical data. The analysis of data, in the form of directions in space or of positions of points on a spherical surface, is required in many contexts in the earth sciences, astrophysics and other fields, yet the methodology required is disseminated throughout the literature. Statistical Analysis of Spherical Data aims to present a unified and up-to-date account of these methods for practical use. The emphasis is on applications rather than theory, with the statistical methods being illustrated throughout the book by data examples.
The spectral geometry of infinite graphs deals with three major themes and their interplay: the spectral theory of the Laplacian, the geometry of the underlying graph, and the heat flow with its probabilistic aspects. In this book, all three themes are brought together coherently under the perspective of Dirichlet forms, providing a powerful and unified approach. The book gives a complete account of key topics of infinite graphs, such as essential self-adjointness, Markov uniqueness, spectral estimates, recurrence, and stochastic completeness. A major feature of the book is the use of intrinsic metrics to capture the geometry of graphs. As for manifolds, Dirichlet forms in the graph setting offer a structural understanding of the interaction between spectral theory, geometry and probability. For graphs, however, the presentation is much more accessible and inviting thanks to the discreteness of the underlying space, laying bare the main concepts while preserving the deep insights of the manifold case. Graphs and Discrete Dirichlet Spaces offers a comprehensive treatment of the spectral geometry of graphs, from the very basics to deep and thorough explorations of advanced topics. With modest prerequisites, the book can serve as a basis for a number of topics courses, starting at the undergraduate level.
The study of isoperimetric inequalities involves a fascinating interplay of analysis, geometry and the theory of partial differential equations. Several conjectures have been made and while many have been resolved, a large number still remain open.One of the principal tools in the study of isoperimetric problems, especially when spherical symmetry is involved, is Schwarz symmetrization, which is also known as the spherically symmetric and decreasing rearrangement of functions. The aim of this book is to give an introduction to the theory of Schwarz symmetrization and study some of its applications.The book gives an modern and up-to-date treatment of the subject and includes several new results proved recently. Effort has been made to keep the exposition as simple and self-contained as possible. A knowledge of the existence theory of weak solutions of elliptic partial differential equations in Sobolev spaces is, however, assumed. Apart from this and a general mathematical maturity at the graduate level, there are no other prerequisites.
This unique text is an introduction to harmonic analysis on the simplest symmetric spaces, namely Euclidean space, the sphere, and the Poincaré upper half plane. This book is intended for beginning graduate students in mathematics or researchers in physics or engineering. Written with an informal style, the book places an emphasis on motivation, concrete examples, history, and, above all, applications in mathematics, statistics, physics, and engineering. Many corrections and updates have been incorporated in this new edition. Updates include discussions of P. Sarnak and others' work on quantum chaos, the work of T. Sunada, Marie-France Vignéras, Carolyn Gordon, and others on Mark Kac's question "Can you hear the shape of a drum?", A. Lubotzky, R. Phillips and P. Sarnak's examples of Ramanujan graphs, and, finally, the author's comparisons of continuous theory with the finite analogues. Topics featured throughout the text include inversion formulas for Fourier transforms, central limit theorems, Poisson's summation formula and applications in crystallography and number theory, applications of spherical harmonic analysis to the hydrogen atom, the Radon transform, non-Euclidean geometry on the Poincaré upper half plane H or unit disc and applications to microwave engineering, fundamental domains in H for discrete groups Γ, tessellations of H from such discrete group actions, automorphic forms, and the Selberg trace formula and its applications in spectral theory as well as number theory.
These notes provide an introduction to the theory of spherical harmonics in an arbitrary dimension as well as an overview of classical and recent results on some aspects of the approximation of functions by spherical polynomials and numerical integration over the unit sphere. The notes are intended for graduate students in the mathematical sciences and researchers who are interested in solving problems involving partial differential and integral equations on the unit sphere, especially on the unit sphere in three-dimensional Euclidean space. Some related work for approximation on the unit disk in the plane is also briefly discussed, with results being generalizable to the unit ball in more dimensions.
This book presents, in a consistent and unified overview, results and developments in the field of today ́s spherical sampling, particularly arising in mathematical geosciences. Although the book often refers to original contributions, the authors made them accessible to (graduate) students and scientists not only from mathematics but also from geosciences and geoengineering. Building a library of topics in spherical sampling theory it shows how advances in this theory lead to new discoveries in mathematical, geodetic, geophysical as well as other scientific branches like neuro-medicine. A must-to-read for everybody working in the area of spherical sampling.
Clustering remains a vibrant area of research in statistics. Although there are many books on this topic, there are relatively few that are well founded in the theoretical aspects. In Robust Cluster Analysis and Variable Selection, Gunter Ritter presents an overview of the theory and applications of probabilistic clustering and variable selection, synthesizing the key research results of the last 50 years. The author focuses on the robust clustering methods he found to be the most useful on simulated data and real-time applications. The book provides clear guidance for the varying needs of both applications, describing scenarios in which accuracy and speed are the primary goals. Robust Cluster Analysis and Variable Selection includes all of the important theoretical details, and covers the key probabilistic models, robustness issues, optimization algorithms, validation techniques, and variable selection methods. The book illustrates the different methods with simulated data and applies them to real-world data sets that can be easily downloaded from the web. This provides you with guidance in how to use clustering methods as well as applicable procedures and algorithms without having to understand their probabilistic fundamentals.
"Visual Quantum Mechanics" uses the computer-generated animations found on the accompanying material on Springer Extras to introduce, motivate, and illustrate the concepts explained in the book. While there are other books on the market that use Mathematica or Maple to teach quantum mechanics, this book differs in that the text describes the mathematical and physical ideas of quantum mechanics in the conventional manner. There is no special emphasis on computational physics or requirement that the reader know a symbolic computation package. Despite the presentation of rather advanced topics, the book requires only calculus, making complicated results more comprehensible via visualization. The material on Springer Extras provides easy access to more than 300 digital movies, animated illustrations, and interactive pictures. This book along with its extra online materials forms a complete introductory course on spinless particles in one and two dimensions.