Download Free Analysis Design Of High Strength Reinforced Concrete Columns Book in PDF and EPUB Free Download. You can read online Analysis Design Of High Strength Reinforced Concrete Columns and write the review.

This book is the companion volume to Design Examples for High Strength Steel Reinforced Concrete Columns – A Eurocode 4 Approach. Guidance is much needed on the design of high strength steel reinforced concrete (SRC) columns beyond the remit of Eurocode 4. Given the much narrower range of permitted concrete and steel material strengths in comparison to EC2 and EC3, and the better ductility and buckling resistance of SRC columns compared to steel or reinforced concrete, there is a clear need for design beyond the guidelines. This book looks at the design of SRC columns using high strength concrete, high strength structural steel and high strength reinforcing steel materials – columns with concrete cylinder strength up to 90 N/mm2, yield strength of structural steel up to 690 N/mm2 and yield strength of reinforcing steel up to 600 N/mm2 respectively. The companion volume provides detailed worked examples on use of these high strength materials. This book is written primarily for structural engineers and designers who are familiar with basic EC4 design, and should also be useful to civil engineering undergraduate and graduate students who are studying composite steel concrete design and construction. Equations for design resistances are presented clearly so that they can be easily programmed into design spreadsheets for ease of use.
This book is the companion volume to Design of High Strength Steel Reinforced Concrete Columns – A Eurocode 4 Approach. This book provides a large number of worked examples for the design of high strength steel reinforced concrete (SRC) columns. It is based on the Eurocode 4 approach, but goes beyond this to give much needed guidance on the narrower range of permitted concrete and steel material strengths in comparison to EC2 and EC3, and the better ductility and buckling resistance of SRC columns compared to steel or reinforced concrete. Special considerations are given to resistance calculations that maximize the full strength of the materials, with concrete cylinder strength up to 90 N/mm2, yield strength of structural steel up to 690 N/mm2 and yield strength of reinforcing steel up to 600 N/mm2 respectively. These examples build on the design principles set out in the companion volume, allowing the readers to practice and understand the EC4 methodology easily. Structural engineers and designers who are familiar with basic EC4 design should find these design examples particularly helpful, whilst engineering undergraduate and graduate students who are studying composite steel concrete design and construction should easily gain further understanding from working through the worked examples which are set out in a step-by-step clearly fashion.
This dissertation, "Inelastic Design of Reinforced Concrete Beams and Limited Ductile High-strength Concrete Columns" by Ching-ming, Johnny, Ho, 何正銘, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: Abstract of thesis entitled INELASTIC DESIGN OF REINFORCED CONCRETE BEAMS AND LIMITED DUCTILE HIGH-STRENGTH CONCRETE COLUMNS submitted by Ho Ching Ming Johnny for the degree of Doctor of Philosophy at The University of Hong Kong in January 2003 This thesis studies the inelastic analysis and design of normal- and high-strength reinforced concrete beams and high-strength reinforced concrete columns. Particular attention is given to the proposed design method of limited ductile high-strength reinforced concrete columns. Analytical studies on normal- and high-strength reinforced concrete beams and experimental research on high-strength reinforced concrete columns are conducted and discussed. To investigate the post-peak behaviour and flexural ductility performance of reinforced concrete beams and columns, the author proposes a new method of rigorous nonlinear moment-curvature analysis that incorporates the strain history effect of tension steel. The moment-curvature curves derived using the new method resemble more closely the actual post-peak behaviour of reinforced concrete members compared to their conventionally-derived counterparts. The results enable the author to derive: (1) a theoretical equation that correlates the curvature ductility factor of reinforced concrete beams to various structural parameters; (2) two sets of design ultimate concrete strains suitable for use with either the proposed equivalent rectangular concrete stress block or the equivalent rectangular stress block of BS 8110; and (3) a series of design charts that facilitates the concurrent design of flexural strength and ductility of reinforced concrete beams. A new parametric study using the proposed analysis method is also conducted to refine the author's previously-proposed equation on transverse steel content of limited ductile high-strength reinforced concrete columns. A series of high-strength reinforced concrete columns containing transverse reinforcement calculated in accordance with this refined equation are tested under compressive axial load and reversed cyclic inelastic displacements to assess its adequacy. These columns prove capable of achieving a curvature ductility factor close to 10, which is the commonly-accepted measure for limited ductile structures. They are subsequently compared with another series of columns containing transverse steel calculated in accordance with the shear requirement of BS 8110. The performance of the latter series is shown to be much worse than the former in terms of flexural strength and ductility. The influence of transverse steel configuration is investigated on some test specimens selected from these two series of columns. In addition, three column specimens are tested to investigate the effect of tension steel lap splice. The test results indicate that the lap splice should be located further away from the potential plastic hinge region. The author also proposes a rational evaluation of plastic hinge length, which could hitherto only be assessed empirically during experimental tests, using various methods that can be grouped into direct and indirect methods. The results are compared with the experimental data obtained from the majority of the column test specimens and with the experimental data obtained by other researchers, and they match closely. To facilitate the design of limited ductile hig
(Uncorrected OCR) Abstract of thesis entitled INELASTIC DESIGN OF REINFORCED CONCRETE BEAMS AND LIMITED DUCTILE HIGH-STRENGTH CONCRETE COLUMNS submitted by Ho Ching Ming Johnny for the degree of Doctor of Philosophy at The University of Hong Kong in January 2003 This thesis studies the inelastic analysis and design of normal- and high-strength reinforced concrete beams and high-strength reinforced concrete columns. Particular attention is given to the proposed design method of limited ductile high-strength reinforced concrete columns. Analytical studies on normal- and high-strength reinforced concrete beams and experimental research on high-strength reinforced concrete columns are conducted and discussed. To investigate the post-peak behaviour and flexural ductility performance of reinforced concrete beams and columns, the author proposes a new method of rigorous nonlinear moment-curvature analysis that incorporates the strain history effect of tension steel. The moment-curvature curves derived using the new method resemble more closely the actual post-peak behaviour of reinforced concrete members compared to their conventionally-derived counterparts. The results enable the author to derive: (1) a theoretical equation that correlates the curvature ductility factor of reinforced concrete beams to various structural parameters; (2) two sets of design ultimate concrete strains suitable for use with either the proposed equivalent rectangular concrete stress block or the equivalent rectangular stress block ofBS 8110; and (3) a series of design charts that facilitates the concurrent design of flexural strength and ductility of reinforced concrete beams. A new parametric study using the proposed analysis method is also conducted to refine the author's previously-proposed equation on transverse steel content of limited ductile high-strength reinforced concrete columns. A series of high-strength reinforced concrete columns containing transverse reinforcement calculated in ac.
The research work involved a study of behaviour and strength of eccentrically loaded High Strength Concrete columns. The research comprised experimental and analytical components. With regard to experimental work, twelve columns were manufactured and tested to failure. All columns were rectangular in cross-section with 300 mm x 100 mm as dimensions. The test specimens were loaded about the minor axis. The ratio of longitudinal reinforcement was either 1.47% (4 - 12 mm diameter bars) or 2.2% (6 - 12 mm diameter bars). The lateral reinforcement was in the form of rectangular closed ties made of 6 mm wires (W6). The spacing of ties was generally 50 mm, but, was decreased to 30 mm, at either ends to avoid premature failure.
This book presents the results of a Japanese national research project carried out in 1988-1993, usually referred to as the New RC Project. Developing advanced reinforced concrete building structures with high strength and high quality materials under its auspices, the project aimed at promoting construction of highrise reinforced concrete buildings in highly seismic areas such as Japan. The project covered all the aspects of reinforced concrete structures, namely materials, structural elements, structural design, construction, and feasibility studies. In addition to presenting these results, the book includes two chapters giving an elementary explanation of modern analytical techniques, i.e. finite element analysis and earthquake response analysis. Contents: RC Highrise Buildings in Seismic Areas (H Aoyama); The New RC Project (H Hiraishi); New RC Materials (M Abe & H Shiohara); New RC Structural Elements (T Kaminosono); Finite Element Analysis (H Noguchi); Structural Design Principles (M Teshigawara); Earthquake Response Analysis (T Kabeyasawa); Construction of New RC Structures (Y Masuda); Feasibility Studies and Example Buildings (H Fujitani). Readership: Civil, ocean and marine engineers.
This book is focused on the theoretical and practical design of reinforced concrete beams, columns and frame structures. It is based on an analytical approach of designing normal reinforced concrete structural elements that are compatible with most international design rules, including for instance the European design rules – Eurocode 2 – for reinforced concrete structures. The book tries to distinguish between what belongs to the structural design philosophy of such structural elements (related to strength of materials arguments) and what belongs to the design rule aspects associated with specific characteristic data (for the material or loading parameters). A previous book, entitled Reinforced Concrete Beams, Columns and Frames – Mechanics and Design, deals with the fundamental aspects of the mechanics and design of reinforced concrete in general, both related to the Serviceability Limit State (SLS) and the Ultimate Limit State (ULS), whereas the current book deals with more advanced ULS aspects, along with instability and second-order analysis aspects. Some recent research results including the use of non-local mechanics are also presented. This book is aimed at Masters-level students, engineers, researchers and teachers in the field of reinforced concrete design. Most of the books in this area are very practical or code-oriented, whereas this book is more theoretically based, using rigorous mathematics and mechanics tools. Contents 1. Advanced Design at Ultimate Limit State (ULS). 2. Slender Compression Members – Mechanics and Design. 3. Approximate Analysis Methods. Appendix 1. Cardano’s Method. Appendix 2. Steel Reinforcement Table. About the Authors Jostein Hellesland has been Professor of Structural Mechanics at the University of Oslo, Norway since January 1988. His contribution to the field of stability has been recognized and magnified by many high-quality papers in famous international journals such as Engineering Structures, Thin-Walled Structures, Journal of Constructional Steel Research and Journal of Structural Engineering. Noël Challamel is Professor in Civil Engineering at UBS, University of South Brittany in France and chairman of the EMI-ASCE Stability committee. His contributions mainly concern the dynamics, stability and inelastic behavior of structural components, with special emphasis on Continuum Damage Mechanics (more than 70 publications in International peer-reviewed journals). Charles Casandjian was formerly Associate Professor at INSA (French National Institute of Applied Sciences), Rennes, France and the chairman of the course on reinforced concrete design. He has published work on the mechanics of concrete and is also involved in creating a web experience for teaching reinforced concrete design – BA-CORTEX. Christophe Lanos is Professor in Civil Engineering at the University of Rennes 1 in France. He has mainly published work on the mechanics of concrete, as well as other related subjects. He is also involved in creating a web experience for teaching reinforced concrete design – BA-CORTEX.
This book describes all aspects of cast-in-place concrete design and construction, and presents several innovative state-of-the-art techniques that will challenge the ways engineers have traditionally approached such tall building projects. Some of the important issues covered include: an in-depth discussion of construction loads, including material, shoring, and reshoring; new materials and techniques, including fibre-reinforced and high-strength concrete; structural analysis; alternate design methods. This book may be of interest to structural and construction engineers working on the design of tall buildings using cast-in-place concrete.