Download Free Analysis Design And Control Optimization Of Process Systems Under Uncertainty Book in PDF and EPUB Free Download. You can read online Analysis Design And Control Optimization Of Process Systems Under Uncertainty and write the review.

Spotlighting the field of Multidisciplinary Design Optimization (MDO), this book illustrates and implements state-of-the-art methodologies within the complex process of aerospace system design under uncertainties. The book provides approaches to integrating a multitude of components and constraints with the ultimate goal of reducing design cycles. Insights on a vast assortment of problems are provided, including discipline modeling, sensitivity analysis, uncertainty propagation, reliability analysis, and global multidisciplinary optimization. The extensive range of topics covered include areas of current open research. This Work is destined to become a fundamental reference for aerospace systems engineers, researchers, as well as for practitioners and engineers working in areas of optimization and uncertainty. Part I is largely comprised of fundamentals. Part II presents methodologies for single discipline problems with a review of existing uncertainty propagation, reliability analysis, and optimization techniques. Part III is dedicated to the uncertainty-based MDO and related issues. Part IV deals with three MDO related issues: the multifidelity, the multi-objective optimization and the mixed continuous/discrete optimization and Part V is devoted to test cases for aerospace vehicle design.
Probabilistic and Randomized Methods for Design under Uncertainty is a collection of contributions from the world’s leading experts in a fast-emerging branch of control engineering and operations research. The book will be bought by university researchers and lecturers along with graduate students in control engineering and operational research.
This book examines application and methods to incorporating stochastic parameter variations into the optimization process to decrease expense in corrective measures. Basic types of deterministic substitute problems occurring mostly in practice involve i) minimization of the expected primary costs subject to expected recourse cost constraints (reliability constraints) and remaining deterministic constraints, e.g. box constraints, as well as ii) minimization of the expected total costs (costs of construction, design, recourse costs, etc.) subject to the remaining deterministic constraints. After an introduction into the theory of dynamic control systems with random parameters, the major control laws are described, as open-loop control, closed-loop, feedback control and open-loop feedback control, used for iterative construction of feedback controls. For approximate solution of optimization and control problems with random parameters and involving expected cost/loss-type objective, constraint functions, Taylor expansion procedures, and Homotopy methods are considered, Examples and applications to stochastic optimization of regulators are given. Moreover, for reliability-based analysis and optimal design problems, corresponding optimization-based limit state functions are constructed. Because of the complexity of concrete optimization/control problems and their lack of the mathematical regularity as required of Mathematical Programming (MP) techniques, other optimization techniques, like random search methods (RSM) became increasingly important. Basic results on the convergence and convergence rates of random search methods are presented. Moreover, for the improvement of the – sometimes very low – convergence rate of RSM, search methods based on optimal stochastic decision processes are presented. In order to improve the convergence behavior of RSM, the random search procedure is embedded into a stochastic decision process for an optimal control of the probability distributions of the search variates (mutation random variables).
This first book to cover all aspects of multi-parametric programming and its applications in process systems engineering includes theoretical developments and algorithms in multi-parametric programming with applications from the manufacturing sector and energy and environment analysis. The volume thus reflects the importance of fundamental research in multi-parametric programming applications, developing mechanisms for the transfer of the new technology to industrial problems. Since the topic applies to a wide range of process systems, as well as due to the interdisciplinary expertise required to solve the challenge, this reference will find a broad readership. Inspired by the leading authority in the field, the Centre for Process Systems Engineering at Imperial College London.
This book contains 182 papers presented at the 12th Symposium of Computer Aided Process Engineering (ESCAPE-12), held in The Hague, The Netherlands, May 26-29, 2002. The objective of ESCAPE-12 is to highlight advances made in the development and use of computing methodologies and information technology in the area of Computer Aided Process Engineering and Process Systems Engineering. The Symposium addressed six themes: (1) Integrated Product&Process Design; (2) Process Synthesis & Plant Design; (3) Process Dynamics & Control; (4) Manufacturing & Process Operations; (5) Computational Technologies; (6) Sustainable CAPE Education and Careers for Chemical Engineers. These themes cover the traditional core activities of CAPE, and also some wider conceptual perspectives, such as the increasing interplay between product and process design arising from the often complex internal structures of modern products; the integration of production chains creating the network structure of the process industry and optimization over life span dimensions, taking sustainability as the ultimate driver.
This textbook is intended for an introductory graduate level on process control, taught in most engineering curricula. It focuses on the statistical techniques and methods of control and system optimization needed for the mathematical modeling, analysis, simulation, control and optimization of multivariable manufacturing processes. In four sections, it covers: Relevant mathematical methods, including random events, variables and processes, and their characteristics; estimation and confidence intervals; Bayes applications; correlation and regression analysis; statistical cluster analysis; and singular value decomposition for classification applications. Mathematical description of manufacturing processes, including static and dynamic models; model validation; confidence intervals for model parameters; principal component analysis; conventional and recursive least squares procedures; nonlinear least squares; and continuous-time, discrete-time, s-domain and Z-domain models. Control of manufacturing processes, including transfer function/transfer matrix models; state-variable models; methods of discrete-time classical control; state variable discrete-time control; state observers/estimators in control systems; methods of decoupling control; and methods of adaptive control. Methods and applications of system optimization, including unconstrained and constrained optimization; analytical and numerical optimization procedures; use of penalty functions; methods of linear programming; gradient methods; direct search methods; genetic optimization; methods and applications of dynamic programming; and applications to estimation, design, control, and planning. Each section of the book will include end-of-chapter exercises, and the book will be suitable for any systems, electrical, chemical, or industrial engineering program, as it focuses on the processes themselves, and not on the product being manufactured. Students will be able to obtain a mathematical model of any manufacturing process, to design a computer-based control system for a particular continuous manufacturing process, and be able to formulate an engineering problem in terms of optimization, as well as the ability to choose and apply the appropriate optimization technique.
A process system faces the challenge of uncertainty throughout its lifetime. At the design stage, uncertainty originates from inaccurate knowledge of design parameters and unmeasured or unmeasurable ambient disturbances. Oftentimes, designers choose to increase system size to account for uncertainty and fluctuations; however, this approach has an economic limit, past which the capital expenditure outweighs the potential operational benefits. In the operational stage, uncertainty is manifest, amongst others, in fluctuations in operating conditions, market demand and raw material availability. Another type of uncertainty in (modern) process operations is related to the quality of process models that are used for making control and operational decisions. Of particular importance is the quality of the dynamic models that are used in real-time optimal control computations. The chemical industry has been the pioneer (and is currently the leader) of model predictive control (MPC) implementations, whereby the control moves are computed, over a receding time horizon, by solving an optimal control problem at each time step. While uniquely able to deal with large-scale, non-square constrained systems, MPC is vitally dependent on the predictive abilities of the built-in model. Changes in plant conditions are a a source of uncertainty in this case as-well, leading to a discrepancy (mismatch) between the model predictions and the true plant behavior. In this dissertation, I address the problems of design under uncertainty and plant-model mismatch. For the former, identification-based optimization (IBO) framework is proposed as a new, computationally efficient framework for optimizing the design of dynamic systems under uncertainty problem. The framework uses properly designed pseudo-random multilevel signals (PRMS) to represent time-varying uncertain variables. This allows us to formulate the design under uncertainty problem as a dynamic optimization problem. A solution algorithm is proposed using a sequential approach. Several application examples are discussed, demonstrating the superior computational performance of the IBO approach. Furthermore, an extension of the method that explicitly considers the tradeoff between conservativeness and dynamic performance is introduced. The latter, plant-model mismatch problem, is addressed using a novel autocovariance-based approach. Under appropriate assumptions, an explicit relation is established between the autocovariance of the process output and the plant-model mismatch terms, represented either in a step response model or a transfer function model. It is demonstrated that an asymptotically correct set of estimates of the values of plant-model mismatch for each model parameters is the global minimizer of the discrepancy between the autocovariance predicted using the relation and the autocovariance calculated from a data set collected from closed-loop operating data. Extensions of this approach handle cases where the active set of the MPC is changing over time and there are setpoint change and measurable disturbances occur in the control loop.
This book presents a comprehensive optimization-based theory and framework that exploits the synergistic interactions and tradeoffs between process design and operational decisions that span different time scales. Conventional methods in the process industry often isolate decision making mechanisms with a hierarchical information flow to achieve tractable problems, risking suboptimal, even infeasible operations. In this book, foundations of a systematic model-based strategy for simultaneous process design, scheduling, and control optimization is detailed to achieve reduced cost and improved energy consumption in process systems. The material covered in this book is well suited for the use of industrial practitioners, academics, and researchers. In Chapter 1, a historical perspective on the milestones in model-based design optimization techniques is presented along with an overview of the state-of-the-art mathematical tools to solve the resulting complex problems. Chapters 2 and 3 discuss two fundamental concepts that are essential for the reader. These concepts are (i) mixed integer dynamic optimization problems and two algorithms to solve this class of optimization problems, and (ii) developing a model based multiparametric programming model predictive control. These tools are used to systematically evaluate the tradeoffs between different time-scale decisions based on a single high-fidelity model, as demonstrated on (i) design and control, (ii) scheduling and control, and (iii) design, scheduling, and control problems. We present illustrative examples on chemical processing units, including continuous stirred tank reactors, distillation columns, and combined heat and power regeneration units, along with discussions of other relevant work in the literature for each class of problems.
Product-driven process design – from molecule to enterprise provides process engineers and process engineering students with access to a modern and stimulating methodology to process and product design. Throughout the book the links between product design and process design become evident while the reader is guided step-by-step through the different stages of the intertwining product and process design activities. Both molecular and enterprise-wide considerations in design are introduced and addressed in detail. Several examples and case studies in emerging areas such as bio- and food-systems, pharmaceuticals and energy are discussed and presented. This book is an excellent guide and companion for undergraduate, graduate students as well as professional practitioners.