Download Free Analysis And Improvement Of The In Vitro Transfection Efficiency Of Plasmid Dna Encoding For Equine Il 12 Used For Melanoma Therapy In Horses Book in PDF and EPUB Free Download. You can read online Analysis And Improvement Of The In Vitro Transfection Efficiency Of Plasmid Dna Encoding For Equine Il 12 Used For Melanoma Therapy In Horses and write the review.

In horses studies targeting equine melanoma therapy using DNA encoding for cytokines as interleukin 12 (IL-12) have shown some promising results. Nevertheless, complete remission after treatment has been only observed in few cases, possibly due to reduced therapy efficiency. Herein transfection efficiency and methodology-induced cytotoxicity were analysed after transfection with different nanoparticle-mediated and conventional approaches using eukaryotic DNA-expression-plasmids and mammalian cell lines. The addition of gold nanoparticles (AuNPs) to the transfection protocols significantly increased transfection efficiency when compared to a conventional FHD mediated transfection protocol, and cell vitality was mainly negatively affected by the addition of chemically generated AuNPs. To measure accurately equine IL-12 and IFN-gamma concentrations after therapy, several antibodies for cross reactivity against this equine cytokines were evaluated, establishing afterwards a bead-based Luminex assay. Additionally, considering the valuable characteristics of dendritic cells (DCs), their use in further equine melanoma studies could be beneficial. To improve the still poor generation efficiency in horses, a human CD14 monoclonal antibody and an automated magnetic activated cell sorting system was used, reaching 2-fold higher DC yields than in previous published outcomes.
The induction of antigen-specific immune responses after in vivo transfection with expression plasmids has triggered a revolution of vaccine research. After a first hype, evoked by the fascinating options of this method, clinical studies did not reach the ambitious aims and a phase of disillusion ensued. It became obvious that Gene vaccines displayed a weaker immunogenicity in humans than had been observed in the mouse models. Meanwhile these hurdles have been overcome and gene vaccines undergo a renaissance. The present book gives an update of the “world of naked gene vaccines”, namely DNA and RNA vaccines. Its content ranges from general mechanisms, inherent immunostimulatory properties and the vast potential to modulate immune responses, to recent successful clinical studies and approved veterinary gene vaccines. Beyond the state-of-the-art of genetic immunization, the reader will be stimulated with a chapter addressing “burning questions”.
Angiogenesis, the development of new blood vessels from the existing vasculature, is essential for physiological growth and over 18,000 research articles have been published describing the role of angiogenesis in over 70 different diseases, including cancer, diabetic retinopathy, rheumatoid arthritis and psoriasis. One of the most important technical challenges in such studies has been finding suitable methods for assessing the effects of regulators of eh angiogenic response. While increasing numbers of angiogenesis assays are being described both in vitro and in vivo, it is often still necessary to use a combination of assays to identify the cellular and molecular events in angiogenesis and the full range of effects of a given test protein. Although the endothelial cell - its migration, proliferation, differentiation and structural rearrangement - is central to the angiogenic process, it is not the only cell type involved. the supporting cells, the extracellular matrix and the circulating blood with its cellular and humoral components also contribute. In this book, experts in the use of a diverse range of assays outline key components of these and give a critical appraisal of their strengths and weaknesses. Examples include assays for the proliferation, migration and differentiation of endothelial cells in vitro, vessel outgrowth from organ cultures, assessment of endothelial and mural cell interactions, and such in vivo assays as the chick chorioallantoic membrane, zebrafish, corneal, chamber and tumour angiogenesis models. These are followed by a critical analysis of the biological end-points currently being used in clinical trials to assess the clinical efficacy of anti-angiogenic drugs, which leads into a discussion of the direction future studies should take. This valuable book is of interest to research scientists currently working on angiogenesis in both the academic community and in the biotechnology and pharmaceutical industries. Relevant disciplines include cell and molecular biology, oncology, cardiovascular research, biotechnology, pharmacology, pathology and physiology.
This is the first edited collection on veterinary applications of electroporation. Written by an international team of experts, this book presents worldwide emerging therapy options for cancer treatments in veterinary oncology practice. Electroporation offers a precision tool to target cancer cells without destroying surrounding tissue structures. The opening of tumor cell membranes facilitates local control of solid tumors either through the delivery of chemotherapeutics or by direct ablation of tissues using electric fields. In addition, transfer of gene-based products into the cancer cells can be used for genetic vaccination to achieve systemic responses and cancer control. Readers will discover valuable reference texts for practitioner education, including chapters on electrodes for unique anatomical access and treatment planning for deep-seated tumors, different immunotherapy applications with gene electrotransfer, calcium electroporation, irreversible electroporation applications and combinations with other common treatments such as surgery, radiation therapy and chemotherapy. Therapy options with electroporation are gaining interest around the world in both human and veterinary oncology, making this book valuable for oncologists, surgeons, primary care veterinarians, residents, interns and students at veterinary schools, where teaching of Electrochemotherapy will become part of the curriculum. Featuring cross-disciplinary authorship, this work further contributes to advances in comparative medicine and translation research in support of the One Health concept.
The field of DNA vaccines has undergone explosive growth in the last few years. As usual, some historical precursors of this approach can be d- cerned in the scientific literature of the last decades. However, the present state of affairs appears to date from observations made discreetly in 1988 by Wolff, Malone, Felgner, and colleagues, which were described in a 1989 patent and published in 1990. Quite surprisingly, they showed that genes carried by pure plasmid DNA and injected in a saline solution, hence the epithet “naked DNA,” could be taken up and expressed by skeletal muscle cells with a low but reproducible frequency. Such a simple methodology was sure to spawn many applications. In a separate and important line of experimentation, Tang, De Vit, and Johnston announced in 1992 that it was indeed possible to obtain humoral immune responses against proteins encoded by DNA delivered to the skin by a biolistic device, which has colloquially become known as the “gene gun. ” The year 1993 saw the publication of further improvements in the me- ods of naked DNA delivery and, above all, the first demonstrations by several groups of the induction of humoral and cytotoxic immune responses to viral antigens expressed from injected plasmid DNA. In some cases, protection against challenge with the pathogen was obtained. The latter result was - questionably the touchstone of a method of vaccination worthy of the name.
1. Non-viral gene therapy / Sean M. Sullivan -- 2. Adenoviral vectors / Stuart A. Nicklin and Andrew H. Baker -- 3. Retroviral vectors and integration analysis / Cynthia C. Bartholomae [und weitere] -- 4. Lentiviral vectors / Janka Matrai, Marinee K.L. Chuah and Thierry VandenDriessche -- 5. Herpes simplex virus vectors / William F. Goins [und weitere] -- 6. Adeno-Associated Viral (AAV) vectors / Nicholas Muzyczka -- 7. Regulatory RNA in gene therapy / Alfred. S. Lewin -- 8. DNA integrating vectors (Transposon, Integrase) / Lauren E. Woodard and Michele P. Calos -- 9. Homologous recombination and targeted gene modification for gene therapy / Matthew Porteus -- 10. Gene switches for pre-clinical studies in gene therapy / Caroline Le Guiner [und weitere] -- 11. Gene therapy for central nervous system disorders / Deborah Young and Patricia A. Lawlor -- 12. Gene therapy of hemoglobinopathies / Angela E. Rivers and Arun Srivastava -- 13. Gene therapy for primary immunodeficiencies / Aisha Sauer, Barbara Cassani and Alessandro Aiuti -- 14. Gene therapy for hemophilia / David Markusic, Babak Moghimi and Roland Herzog -- 15. Gene therapy for obesity and diabetes / Sergei Zolotukhin and Clive H. Wasserfall -- 16. Gene therapy for Duchenne muscular dystrophy / Takashi Okada and Shin'ichi Takeda -- 17. Cancer gene therapy / Kirsten A.K. Weigel-Van Aken -- 18. Gene therapy for autoimmune disorders / Daniel F. Gaddy, Melanie A. Ruffner and Paul D. Robbins -- 19. Gene therapy for inherited metabolic storage diseases / Cathryn Mah -- 20. Retinal diseases / Shannon E. Boye, Sanford L. Boye and William W. Hauswirth -- 21. A brief guide to gene therapy treatments for pulmonary diseases / Ashley T. Martino, Christian Mueller and Terence R. Flotte -- 22. Cardiovascular disease / Darin J. Falk, Cathryn S. Mah and Barry J. Byrne
Designed as an advanced survey of the field, this book describes the key research parameters of nanocarrier technologies. It is the first book with this topic. It comprises a collection of scientific articles from top research people in the field and provides an up-to-date source containing recent citation and bibliography. The book is an indispensable source of information for new researchers and scientists.
The most comprehensive reference on fluorescent nanodiamond physical and chemical properties and contemporary applications Fluorescent nanodiamonds (FNDs) have drawn a great deal of attention over the past several years, and their applications and development potential are proving to be manifold and vast. The first and only book of its kind, Fluorescent Nanodiamonds is a comprehensive guide to the basic science and technical information needed to fully understand the fundamentals of FNDs and their potential applications across an array of domains. In demonstrating the importance of FNDs in biological applications, the authors bring together all relevant chemistry, physics, materials science and biology. Nanodiamonds are produced by powerful cataclysmic events such as explosions, volcanic eruptions and meteorite impacts. They also can be created in the lab by high-pressure high-temperature treatment of graphite or detonating an explosive in a reactor vessel. A single imperfection can give a nanodiamond a specific, isolated color center which allows it to function as a single, trapped atom. Much smaller than the thickness of a human hair, a nanodiamond can have a huge surface area that allows it to bond with a variety of other materials. Because of their non-toxicity, nanodiamonds may be useful in biomedical applications, such as drug delivery and gene therapy. The most comprehensive reference on a topic of rapidly increasing interest among academic and industrial researchers across an array of fields Includes numerous case studies and practical examples from many areas of research and industrial applications, as well as fascinating and instructive historical perspectives Each chapter addresses, in-depth, a single integral topic including the fundamental properties, synthesis, mechanisms and functionalisation of FNDs The first book published by the key patent holder with his research group in the field of FNDs Fluorescent Nanodiamonds is an important working resource for a broad range of scientists and engineers in industry and academia. It will also be a welcome reference for instructors in chemistry, physics, materials science, biology and related fields.