Download Free Analysis And Computation Of Electrical And Magnetic Field Problems Book in PDF and EPUB Free Download. You can read online Analysis And Computation Of Electrical And Magnetic Field Problems and write the review.

Analysis and Computation of Electric and Magnetic Field Problems, Second Edition is a comprehensive treatment of both analytical and numerical methods for the derivation of two-dimensional static and quasi-static electric and magnetic fields. The essence of each method of solution is emphasized and the scopes of the different methods are described, with particular regard to the influence of digital computers. This book is comprised of 12 chapters and begins with an introduction to the fundamental theory of electric and magnetic fields. The derivation of quantities of physical interest such as force, inductance, and capacitance from the field solution is explained. The next section deals with the methods of images and separation of variables and presents direct solutions of Laplace's equation and of Poisson's equation. The basic solutions are developed rigorously from considerations of surface charges and are expressed in complex variable form. Subsequent chapters discuss transformation methods as well as line and doublet sources; the transformation of regions exterior to finite boundaries; and the powerful numerical methods used to enlarge the scope of conformal transformation. The last section is devoted to finite difference methods and the Monte Carlo method, along with all classes of boundary shape and condition. This monograph is intended primarily for engineers, physicists, and mathematicians, as well as degree students towards the end of their courses.
For well over a decade, the numerical approach to field computation has been gaining progressively greater importance. Analytical methods of field compu tation are, at best, unable to accommodate the very wide variety of configura tions in which fields must be computed. On the other hand, numerical methods can accommodate many practical configurations that analytical methods cannot. With the advent of high-speed digital computers, numerical field computations have finally become practical. However, in order to implement numerical methods of field computation, we need algorithms, numerical methods, and mathematical tools that are largely quite different from those that have been traditionally used with analytical methods. Many of these algorithms have, in fact, been presented in the large number of papers that have been published on this subject in the last two decades. And to some of those who are already experienced in the art of numerical field computations, these papers, in addition to their own original work, are enough to give them the knowledge that they need to perform practical numerical field computations.
University Physics is designed for the two- or three-semester calculus-based physics course. The text has been developed to meet the scope and sequence of most university physics courses and provides a foundation for a career in mathematics, science, or engineering. The book provides an important opportunity for students to learn the core concepts of physics and understand how those concepts apply to their lives and to the world around them. Due to the comprehensive nature of the material, we are offering the book in three volumes for flexibility and efficiency. Coverage and Scope Our University Physics textbook adheres to the scope and sequence of most two- and three-semester physics courses nationwide. We have worked to make physics interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. With this objective in mind, the content of this textbook has been developed and arranged to provide a logical progression from fundamental to more advanced concepts, building upon what students have already learned and emphasizing connections between topics and between theory and applications. The goal of each section is to enable students not just to recognize concepts, but to work with them in ways that will be useful in later courses and future careers. The organization and pedagogical features were developed and vetted with feedback from science educators dedicated to the project. VOLUME II Unit 1: Thermodynamics Chapter 1: Temperature and Heat Chapter 2: The Kinetic Theory of Gases Chapter 3: The First Law of Thermodynamics Chapter 4: The Second Law of Thermodynamics Unit 2: Electricity and Magnetism Chapter 5: Electric Charges and Fields Chapter 6: Gauss's Law Chapter 7: Electric Potential Chapter 8: Capacitance Chapter 9: Current and Resistance Chapter 10: Direct-Current Circuits Chapter 11: Magnetic Forces and Fields Chapter 12: Sources of Magnetic Fields Chapter 13: Electromagnetic Induction Chapter 14: Inductance Chapter 15: Alternating-Current Circuits Chapter 16: Electromagnetic Waves
This introduction to electromagnetic fields emphasizes the computation of fields and the development of theoretical relations. It presents the electromagnetic field and Maxwell's equations with a view toward connecting the disparate applications to the underlying relations, along with computational methods of solving the equations.
This book fills the gap between theory, available computational techniques and engineering practice in the design of electrical and electromechanical machines. The theory underlying all currently recommended computational and experimental methods is covered comprehensively, including field analysis and synthesis, magnetic fields coupled to stress and thermal fields. The book is very practically oriented and includes many examples of actual solutions to real devices.
The subject of magnetostatics - the mathematical theory that describes the forces and fields resulting from the steady flow of electrical currents - has a long history. By capturing the basic concepts, and building towards the computation of magnetic fields, this book is a self-contained discussion of the major subjects in magnetostatics. Overviews of Maxwell's equations, the Poisson equation, and boundary value problems pave the way for dealing with fields from transverse, axial and periodic magnetic arrangements and assemblies of permanent magnets. Examples from accelerator and beam physics give up-to-date context to the theory. Furthermore, both complex contour integration and numerical techniques (including finite difference, finite element, and integral equation methods) for calculating magnetic fields are discussed in detail with plentiful examples. Both theoretical and practical information on carefully selected topics make this a one-stop reference for magnet designers, as well as for physics and electrical engineering undergraduate students.
Designed for accessibility to students, researchers and design and development workers, it discusses the full range of classical and modern methods for the solution of electric, magnetic, some thermal and other similar fields. It deals with 1, 2 and 3 space dimensions, with linear, non-linear and anisotropic media as well as static and ``low''-frequency time variation. Numerous examples, detailing the physical significance of the mathematics and the practical considerations involved in implementing the solutions, make this a very hands-on working reference.
This book contains the edited versions of the papers presented at the Second International Workshop on Electric and Magnetic Fields held at the Katholieke Universiteit van Leuven (Belgium) in May 1994. This Workshop deals with numerical solutions of electromagnetic problems in real life applications. The topics include coupled problems (thermal, mechanical, electric circuits), CAD & CAM applications, 3D eddy current and high frequency problems, optimisation and application oriented numerical problems. This workshop was organised jointly by the AIM (Association of Engineers graduated from de Montefiore Electrical Institute) together with the Departments of Electrical Engineering of the Katholieke Universiteit van Leuven (Prof. R. Belmans), the University of Gent (Prof. J. Melkebbek) and the University of Liege (Prof. W. Legros). These laboratories are working together in the framework of the Pole d'Attraction Interuniversitaire - Inter-University Attractie-Pole 51 - on electromagnetic systems led by the University of Liege and the research work they perform covers most of the topics of the Workshop. One of the principal aims of this Workshop was to provide a bridge between the electromagnetic device designers, mainly industrialists, and the electromagnetic field computation developers. Therefore, this book contains a continuous spectrum of papers from application of electromagnetic models in industrial design to presentation of new theoretical developments.
A comprehensive and "state-of-the-art" coverage of the design and fabrication of IGBT. All-in-one resource Explains the fundamentals of MOS and bipolar physics. Covers IGBT operation, device and process design, power modules, and new IGBT structures.
Computational Methods for the Innovative Design of Electrical Devices is entirely focused on the optimal design of various classes of electrical devices. Emerging new methods, like e.g. those based on genetic algorithms, are presented and applied in the design optimization of different devices and systems. Accordingly, the solution to field analysis problems is based on the use of finite element method, and analytical methods as well. An original aspect of the book is the broad spectrum of applications in the area of electrical engineering, especially electrical machines. This way, traditional design criteria of conventional devices are revisited in a critical way, and some innovative solutions are suggested. In particular, the optimization procedures developed are oriented to three main aspects: shape design, material properties identification, machine optimal behaviour. Topics covered include: • New parallel finite-element solvers • Response surface method • Evolutionary computing • Multiobjective optimization • Swarm intelligence • MEMS applications • Identification of magnetic properties of anisotropic laminations • Neural networks for non-destructive testing • Brushless DC motors, transformers • Permanent magnet disc motors, magnetic separators • Magnetic levitation systems