Download Free Anaerobic Digestion Processes In Industrial Wastewater Treatment Book in PDF and EPUB Free Download. You can read online Anaerobic Digestion Processes In Industrial Wastewater Treatment and write the review.

There have been many significant microbiological, biochemical and technological advances made in the understanding and implementation of anaerobic digestion processes with respect to industrial and domestic wastewater treatment. Elucida tion of the mechanisms of anaerobic degradation has permitted a greater control over the biological parameters of waste conversion and the technical advances achieved have reduced the time and land area requirements and increased the cost-effectiveness and efficiency of the various processes presently in use. By product recovery in the form of utilisable methane gas has become increasingly feasible, while the development of new and superior anaerobic reactor designs with increased tolerance to toxic and shock loadings of concentrated effiuents has established a potential for treating many extremely recalcitrant industrial wastestreams. The major anaerobic bioreactor systems and their applications and limitations are examined here, together with microbiological and biochemical aspects of anaerobic wastewater treatment processes. London, June 1986 S. M. Stronach T. Rudd J. N. Lester v Table of Contents 1 The Biochemistry of Anaerobic Digestion 1 1. 1 Kinetics of Substrate Utilisation and Bacterial Growth 3 1. 1. 1 COD Fluxes and Mean Carbon Oxidation State 3 1. 1. 2 Bacterial Growth and Biokinetics 4 1. 1. 2. 1 Growth and Single Substrate Kinetics 4 1. 1. 2. 2 Multisubstrate Systems . 8 1. 2 Kinetics and Biochemistry of Hydrolysis 8 1. 3 Kinetics and Biochemistry of Fermentation and J1-0xidation . 11 1.
This book presents new application processes in the context of anaerobic digestion (AD), such as phosphorus recovery, microbial fuel cells (MFCs), and seaweed digestion. In addition, it introduces a new technique for the modeling and optimization of AD processes. Chapters 1 and 2 review AD as a technique for converting a range of organic wastes into biogas, while Chapter 3 discusses the recovery of phosphorus from anaerobically digested liquor. Chapters 4 and 5 focus on new techniques for modeling and optimizing AD. Chapters 6 and 7 then describe the state of the art in AD effluent treatment. The book’s final three chapters focus on more recent developments, including microbial fuel cells (MFCs) (Chapter 8), seaweed production (Chapter 9), and enzyme technologies (Chapter 10).
This book presents a state-of-the-art report on the treatment of pulp and paper industry effluents using anaerobic technology. It covers a comprehensive range of topics, including the basic reasons for anaerobic treatment, comparison between anaerobic and aerobic treatment, effluent types suitable for anaerobic treatment, design considerations for anaerobic treatment, anaerobic reactor configurations applied for treatment of pulp and paper industry effluents, present status of anaerobic treatment in pulp and paper industry, economic aspects, examples of full scale installations and future trends.
The IWA Task Group for Mathematical Modelling of Anaerobic Digestion Processes was created with the aim to produce a generic model and common platform for dynamic simulations of a variety of anaerobic processes. This book presents the outcome of this undertaking and is the result of four years collaborative work by a number of international experts from various fields of anaerobic process technology. The purpose of this approach is to provide a unified basis for anaerobic digestion modelling. It is hoped this will promote increased application of modelling and simulation as a tool for research, design, operation and optimisation of anaerobic processes worldwide. This model was developed on the basis of the extensive but often disparate work in modelling and simulation of anaerobic digestion systems over the last twenty years. In developing ADM1, the Task Group have tried to establish common nomenclature, units and model structure, consistent with existing anaerobic modelling literature and the popular activated sludge models (See Activated Sludge Models ASM1, ASM2, ASM2d and ASM3, IWA Publishing, 2000, ISBN: 1900222248). As such, it is intended to promote widespread application of simulation from domestic (wastewater and sludge) treatment systems to specialised industrial applications. Outputs from the model include common process variables such gas flow and composition, pH, separate organic acids, and ammonium. The structure has been devised to encourage specific extensions or modifications where required, but still maintain a common platform. During development the model has been successfully tested on a range of systems from full-scale waste sludge digestion to laboratory-scale thermophilic high-rate UASB reactors. The model structure is presented in a readily applicable matrix format for implementation in many available differential equation solvers. It is expected that the model will be available as part of commercial wastewater simulation packages. ADM1 will be a valuable information source for practising engineers working in water treatment (both domestic and industrial) as well as academic researchers and students in Environmental Engineering and Science, Civil and Sanitary Engineering, Biotechnology, and Chemical and Process Engineering departments. Contents Introduction Nomenclature, State Variables and Expressions Biochemical Processes Physicochemical Processes Model Implementation in a Single Stage CSTR Suggested Biochemical Parameter Values, Sensitivity and Estimation Conclusions References Appendix A: Review of Parameters Appendix B: Supplementary Matrix Information Appendix C: Integration with the ASM Appendix D: Estimating Stoichiometric Coefficients for Fermentation Scientific & Technical Report No.13
Anaerobic digestion is a biochemical degradation process that converts complex organic material, such as animal manure, into methane and other byproducts. Part of the author's Wastewater Microbiology series, Microbiology of Anareboic Digesters eschews technical jargon to deliver a practical, how-to guide for wastewater plant operators.
Anaerobic Reactors is the forth volume in the series Biological Wastewater Treatment. The fundamentals of anaerobic treatment are presented in detail, including its applicability, microbiology, biochemistry and main reactor configurations. Two reactor types are analysed in more detail, namely anaerobic filters and especially UASB (upflow anaerobic sludge blanket) reactors. Particular attention is also devoted to the post-treatment of the effluents from the anaerobic reactors. The book presents in a clear and informative way the main concepts, working principles, expected removal efficiencies, design criteria, design examples, construction aspects and operational guidelines for anaerobic reactors. About the series: The series is based on a highly acclaimed set of best selling textbooks. This international version is comprised by six textbooks giving a state-of-the-art presentation of the science and technology of biological wastewater treatment. Other titles in the series are: Volume 1: Waste Stabilisation Ponds; Volume 2: Basic Principles of Wastewater Treatment; Volume 3: Waste Stabilization Ponds; Volume 5: Activated Sludge and Aerobic Biofilm Reactors; Volume 6: Sludge Treatment and Disposal
Anaerobic digestion is a major field for the treatment of waste and wastewater. Lately the focus has been on the quality of the effluent setting new demands for pathogen removal and for successful removal of unwanted chemicals during the anaerobic process. The two volumes on Biomethanation are devoted to presenting the state of art within the science and application of anaerobic digestion. They describe the basic microbiolgical knowledge of importance for understanding the processes of anaerobic bioreactors along with the newest molecular techniques for examining these systems. In addition, the applications for treatment of waste and wastewaters are presented along with the latest knowledge on process control and regulation of anaerobic bioprocesses. Together these two volumes give an overview of a growing area, which previously has never been presented in such a comprehensive way.
It is necessary to understand the extent of pollution in the environment in terms of the air, water, and soil in order for both humans and animals to live healthier lives. Poor waste treatment or pollution monitoring can lead to massive environmental issues, such as diminishing valuable resources, and cause a significant negative impact on society. Solutions, such as reuse of waste and sustainable waste management, must be explored to prevent these adverse effects. The Handbook of Research on Resource Management for Pollution and Waste Treatment is a collection of innovative research that examines waste and pollution treatment methods that can be adopted at local and international levels and examines appropriate resource management strategies for environmentally related issues. Featuring coverage on a wide range of topics such as soil washing, bioremediation, and runoff handling, this book is ideally designed for environmentalists, engineers, waste management professionals, natural resource regulators, environmental policymakers, scientists, academicians, researchers, and students seeking current research on viable resource management methods for the regeneration of their immediate environment.
For information on the online course in Biological Wastewater Treatment from UNESCO-IHE, visit: http://www.iwapublishing.co.uk/books/biological-wastewater-treatment-online-course-principles-modeling-and-design Over the past twenty years, the knowledge and understanding of wastewater treatment have advanced extensively and moved away from empirically-based approaches to a first principles approach embracing chemistry, microbiology, physical and bioprocess engineering, and mathematics. Many of these advances have matured to the degree that they have been codified into mathematical models for simulation with computers. For a new generation of young scientists and engineers entering the wastewater treatment profession, the quantity, complexity and diversity of these new developments can be overwhelming, particularly in developing countries where access is not readily available to advanced level tertiary education courses in wastewater treatment. Biological Wastewater Treatment addresses this deficiency. It assembles and integrates the postgraduate course material of a dozen or so professors from research groups around the world that have made significant contributions to the advances in wastewater treatment. The book forms part of an internet-based curriculum in biological wastewater treatment which also includes: Summarized lecture handouts of the topics covered in book Filmed lectures by the author professors Tutorial exercises for students self-learning Upon completion of this curriculum the modern approach of modelling and simulation to wastewater treatment plant design and operation, be it activated sludge, biological nitrogen and phosphorus removal, secondary settling tanks or biofilm systems, can be embraced with deeper insight, advanced knowledge and greater confidence.
Biogas Production covers the most cutting-edge pretreatment processes being used and studied today for the production of biogas. As an increasingly important piece of the "energy pie," biogas and other biofuels are being used more and more around the world in every conceivable area of industry and could be a partial answer to the energy problem and the elimination of global warming. This book will highlight the recent advances in the pretreatment and value addition of lignocellulosic wastes (LCW) with the main focus on domestic and agro-industrial residues. Mechanical, physical, and biological treatment systems are brought into perspective. The main value-added products from lignocellulosic wastes are summarized in a manner that pinpoints the most recent trends and the future directions. Physico-chemical and biological treatment systems seem to be the most favored options while biofuels, biodegradable composites, and biosorbents production paint a bright picture of the current and future bio-based products. Engineered microbes seem to tackle the problem of bioconversion of substrates that are otherwise nonconvertible by conventional wild strains. Although the main challenge facing LCW utilization is the high costs involved in treatment and production processes, some recent affordable processes with promising results have been proposed. Future trends are being directed to nanobiotechnology and genetic engineering for improved processes and products.