Download Free An Undergraduate Introduction To Financial Mathematics Book in PDF and EPUB Free Download. You can read online An Undergraduate Introduction To Financial Mathematics and write the review.

This textbook provides an introduction to financial mathematics and financial engineering for undergraduate students who have completed a three- or four-semester sequence of calculus courses. It introduces the theory of interest, discrete and continuous random variables and probability, stochastic processes, linear programming, the Fundamental Theorem of Finance, option pricing, hedging, and portfolio optimization. This third edition expands on the second by including a new chapter on the extensions of the Black-Scholes model of option pricing and a greater number of exercises at the end of each chapter. More background material and exercises added, with solutions provided to the other chapters, allowing the textbook to better stand alone as an introduction to financial mathematics. The reader progresses from a solid grounding in multivariable calculus through a derivation of the Black-Scholes equation, its solution, properties, and applications. The text attempts to be as self-contained as possible without relying on advanced mathematical and statistical topics. The material presented in this book will adequately prepare the reader for graduate-level study in mathematical finance.
This textbook contains the fundamentals for an undergraduate course in mathematical finance aimed primarily at students of mathematics. Assuming only a basic knowledge of probability and calculus, the material is presented in a mathematically rigorous and complete way. The book covers the time value of money, including the time structure of interest rates, bonds and stock valuation; derivative securities (futures, options), modelling in discrete time, pricing and hedging, and many other core topics. With numerous examples, problems and exercises, this book is ideally suited for independent study.
This book’s primary objective is to educate aspiring finance professionals about mathematics and computation in the context of financial derivatives. The authors offer a balance of traditional coverage and technology to fill the void between highly mathematical books and broad finance books. The focus of this book is twofold: To partner mathematics with corresponding intuition rather than diving so deeply into the mathematics that the material is inaccessible to many readers. To build reader intuition, understanding and confidence through three types of computer applications that help the reader understand the mathematics of the models. Unlike many books on financial derivatives requiring stochastic calculus, this book presents the fundamental theories based on only undergraduate probability knowledge. A key feature of this book is its focus on applying models in three programming languages –R, Mathematica and EXCEL. Each of the three approaches offers unique advantages. The computer applications are carefully introduced and require little prior programming background. The financial derivative models that are included in this book are virtually identical to those covered in the top financial professional certificate programs in finance. The overlap of financial models between these programs and this book is broad and deep.
This textbook aims to fill the gap between those that offer a theoretical treatment without many applications and those that present and apply formulas without appropriately deriving them. The balance achieved will give readers a fundamental understanding of key financial ideas and tools that form the basis for building realistic models, including those that may become proprietary. Numerous carefully chosen examples and exercises reinforce the student’s conceptual understanding and facility with applications. The exercises are divided into conceptual, application-based, and theoretical problems, which probe the material deeper. The book is aimed toward advanced undergraduates and first-year graduate students who are new to finance or want a more rigorous treatment of the mathematical models used within. While no background in finance is assumed, prerequisite math courses include multivariable calculus, probability, and linear algebra. The authors introduce additional mathematical tools as needed. The entire textbook is appropriate for a single year-long course on introductory mathematical finance. The self-contained design of the text allows for instructor flexibility in topics courses and those focusing on financial derivatives. Moreover, the text is useful for mathematicians, physicists, and engineers who want to learn finance via an approach that builds their financial intuition and is explicit about model building, as well as business school students who want a treatment of finance that is deeper but not overly theoretical.
Introduction to Financial Mathematics motivates students through a discussion of personal finances and portfolio management. The book covers nearly all of the syllabus topics of the Financial Mathematics Actuarial examination to provide students with the foundation they require for future studies and in their careers. It begins
Option Valuation: A First Course in Financial Mathematics provides a straightforward introduction to the mathematics and models used in the valuation of financial derivatives. It examines the principles of option pricing in detail via standard binomial and stochastic calculus models. Developing the requisite mathematical background as needed, the text presents an introduction to probability theory and stochastic calculus suitable for undergraduate students in mathematics, economics, and finance. The first nine chapters of the book describe option valuation techniques in discrete time, focusing on the binomial model. The author shows how the binomial model offers a practical method for pricing options using relatively elementary mathematical tools. The binomial model also enables a clear, concrete exposition of fundamental principles of finance, such as arbitrage and hedging, without the distraction of complex mathematical constructs. The remaining chapters illustrate the theory in continuous time, with an emphasis on the more mathematically sophisticated Black-Scholes-Merton model. Largely self-contained, this classroom-tested text offers a sound introduction to applied probability through a mathematical finance perspective. Numerous examples and exercises help students gain expertise with financial calculus methods and increase their general mathematical sophistication. The exercises range from routine applications to spreadsheet projects to the pricing of a variety of complex financial instruments. Hints and solutions to odd-numbered problems are given in an appendix and a full solutions manual is available for qualifying instructors.
An innovative textbook for use in advanced undergraduate and graduate courses; accessible to students in financial mathematics, financial engineering and economics. Introduction to the Economics and Mathematics of Financial Markets fills the longstanding need for an accessible yet serious textbook treatment of financial economics. The book provides a rigorous overview of the subject, while its flexible presentation makes it suitable for use with different levels of undergraduate and graduate students. Each chapter presents mathematical models of financial problems at three different degrees of sophistication: single-period, multi-period, and continuous-time. The single-period and multi-period models require only basic calculus and an introductory probability/statistics course, while an advanced undergraduate course in probability is helpful in understanding the continuous-time models. In this way, the material is given complete coverage at different levels; the less advanced student can stop before the more sophisticated mathematics and still be able to grasp the general principles of financial economics. The book is divided into three parts. The first part provides an introduction to basic securities and financial market organization, the concept of interest rates, the main mathematical models, and quantitative ways to measure risks and rewards. The second part treats option pricing and hedging; here and throughout the book, the authors emphasize the Martingale or probabilistic approach. Finally, the third part examines equilibrium models—a subject often neglected by other texts in financial mathematics, but included here because of the qualitative insight it offers into the behavior of market participants and pricing.
An Introduction to the Mathematics of Finance: A Deterministic Approach, Second edition, offers a highly illustrated introduction to mathematical finance, with a special emphasis on interest rates. This revision of the McCutcheon-Scott classic follows the core subjects covered by the first professional exam required of UK actuaries, the CT1 exam. It realigns the table of contents with the CT1 exam and includes sample questions from past exams of both The Actuarial Profession and the CFA Institute. With a wealth of solved problems and interesting applications, An Introduction to the Mathematics of Finance stands alone in its ability to address the needs of its primary target audience, the actuarial student. - Closely follows the syllabus for the CT1 exam of The Institute and Faculty of Actuaries - Features new content and more examples - Online supplements available: http://booksite.elsevier.com/9780080982403/ - Includes past exam questions from The Institute and Faculty of Actuaries and the CFA Institute
This textbook on the basics of option pricing is accessible to readers with limited mathematical training. It is for both professional traders and undergraduates studying the basics of finance. Assuming no prior knowledge of probability, Sheldon M. Ross offers clear, simple explanations of arbitrage, the Black-Scholes option pricing formula, and other topics such as utility functions, optimal portfolio selections, and the capital assets pricing model. Among the many new features of this third edition are new chapters on Brownian motion and geometric Brownian motion, stochastic order relations and stochastic dynamic programming, along with expanded sets of exercises and references for all the chapters.
An elementary introduction to probability and mathematical finance including a chapter on the Capital Asset Pricing Model (CAPM), a topic that is very popular among practitioners and economists. Dr. Roman has authored 32 books, including a number of books on mathematics, such as Coding and Information Theory, Advanced Linear Algebra, and Field Theory, published by Springer-Verlag.