Download Free An Investigation Of Ethanol Methanol And Lactate As Electron Donors For The Anaerobic Biological Reduction Of Chlorinated Ethenes Book in PDF and EPUB Free Download. You can read online An Investigation Of Ethanol Methanol And Lactate As Electron Donors For The Anaerobic Biological Reduction Of Chlorinated Ethenes and write the review.

Reductive dechlorination is an effective bioremediation method for treating tetrachloroethene and its daughter compounds. Common techniques of stimulating reductive dechlorination involve the injection of costly, soluble electron donors into the contaminated plume. Vegetable oil is a cheaper alternative to such donors on a cost-per-mass basis, and may even be more economically implemented. This study applied microcosm studies to investigate the effectiveness of vegetable oil as an electron donor. Cultures fed with vegetable oil were observed to completely dechlorinate tetrachloroethene to ethene. Dechlorination by vegoil was also sustainable over a period of 140 days without the addition of nutrient amendments. Nevertheless, vegetable oil was found to ferment relatively quickly, leading to low donor efficiency. Biomass and acetate were the most significant products of vegoil-fed microcosms. Volatile fatty acids longer than 2 carbons rarely persisted. Since these acids can act as good secondary donors in the aqueous phase, their absence implies that the dechlorination zone does not extend very far from the vegoil phase. Inference from biomass measurements and dechlorination behavior hints that endogenous decay of large quantities of biomass could provide a stable source of electron donor. Perhaps a similar method of growing up a large pool of biomass for electron-donating purposes could be investigated in the future. Since acetate rarely ferments further to produce more hydrogen, and methanogenic biomass is fairly immobile, one good area of application for vegoil would be in bio-barriers. Interception of a contaminated plume by constructing biobarriers downstream reduces the need to maintain a large zone of treatment, although treatment times could be longer. For example, vegetable-oil-coated sand particles could be used to back-fill a trench to intercept and treat a plume consisting of dissolved chlorinated ethenes.
​This volume provides a review of the past 10 to 15 years of intensive research, development and demonstrations that have been on the forefront of developing bioaugmentation into a viable remedial technology. This volume provides both a primer on the basic microbial processes involved in bioaugmentation, as well as a thorough summary of the methodology for implementing the technology. This reference volume will serve as a valuable resource for environmental remediation professionals who seek to understand, evaluate, and implement bioaugmentation.